Hands-On Look at ZFS with MySQL

ZFS with MySQLThis post is a hands-on look at ZFS with MySQL.

In my previous post, I highlighted the similarities between MySQL and ZFS. Before going any further, I’d like you to be able to play and experiment with ZFS. This post shows you how to configure ZFS with MySQL in a minimalistic way on either Ubuntu 16.04 or Centos 7.

Installation

In order to be able to use ZFS, you need some available storage space. For storage – since the goal here is just to have a hands-on experience – we’ll use a simple file as a storage device. Although simplistic, I have now been using a similar setup on my laptop for nearly three years (just can’t get rid of it, it is too useful). For simplicity, I suggest you use a small Centos7 or Ubuntu 16.04 VM with one core, 8GB of disk and 1GB of RAM.

First, you need to install ZFS as it is not installed by default. On Ubuntu 16.04, you simply need to run:

On RedHat or Centos 7.4, the procedure is a bit more complex. First, we need to install the EPEL ZFS repository:

Apparently, there were issues with ZFS kmod kernel modules on RedHat/Centos. I never had any issues with Ubuntu (and who knows how often the kernel is updated). Anyway, it is recommended that you enable kABI-tracking kmods. Edit the file /etc/yum.repos.d/zfs.repo, disable the ZFS repo and enable the zfs-kmod repo. The beginning of the file should look like:

Now, we can proceed and install ZFS:

After the installation, I have ZFS version 0.6.5.6 on Ubuntu and version 0.7.3.0 on Centos7. The version difference doesn’t matter for what will follow.

Setup

So, we need a container for the data. You can use any of the following options for storage:

  • A free disk device
  • A free partition
  • An empty LVM logical volume
  • A file

The easiest solution is to use a file, and so that’s what I’ll use here. A file is not the fastest and most efficient storage, but it is fine for our hands-on. In production, please use real devices. A more realistic server configuration will be discussed in a future post. The following steps are identical on Ubuntu and Centos. The first step is to create the storage file. I’ll use a file of 1~GB in /mnt. Adjust the size and path to whatever suits the resources you have:

The result is a 1GB file in /mnt:

Now, we will create our ZFS pool, mysqldata, using the file we just created:

If you have a result similar to the above, congratulations, you have a ZFS pool. If you put files in /mysqldata, they are in ZFS.

MySQL installation

Now, let’s install MySQL and play around a bit. We’ll begin by installing the Percona repository:

Next, we install Percona Server for MySQL 5.7:

The installation command pulls all the dependencies and sets up the MySQL root password. On Ubuntu, the install script asks for the password, but on Centos7 a random password is set. To retrieve the random password:

The following step is to reset the root password:

Since 5.7.15, the password validation plugin by defaults requires a length greater than 8, mixed cases, at least one digit and at least one special character. On either Linux distributions, I suggest you set the credentials in the /root/.my.cnf file like this:

MySQL configuration for ZFS

Now that we have both ZFS and MySQL, we need some configuration to make them play together. From here, the steps are the same on Ubuntu and Centos. First, we stop MySQL:

Then, we’ll configure ZFS. We will create three ZFS filesystems in our pool:

  • mysql will be the top level filesystem for the MySQL related data. This filesystem will not directly have data in it, but data will be stored in the other filesystems that we create. The utility of the mysql filesystem will become obvious when we talk about snapshots. Something to keep in mind for the next steps, the properties of a filesystem are by default inherited from the upper level.
  • mysql/data will be the actual datadir. The files in the datadir are mostly accessed through random IO operations, so we’ll set the ZFS recordsize to match the InnoDB page size.
  • mysql/log will be where the log files will be stored. By log files, I primarily mean the InnoDB log files. But the binary log file, the slow query log and the error log will all be stored in that directory. The log files are accessed through sequential IO operations. We’ll thus use a bigger ZFS recordsize in order to maximize the compression efficiency.

Let’s begin with the top-level MySQL container. I could have used directly mysqldata, but that would somewhat limit us. The following steps create the filesystem and set some properties:

I just set compression to ‘gzip’ (the equivalent of gzip level 6), recordsize to 128KB and atime (the file’s access time) to off. Once we are done with the mysql filesystem, we can proceed with the data and log filesystems: