PostgreSQL Updatable Views: Performing Schema Updates With Minimal Downtime

postgres updatable viewsRecently, one of our customers asked us how to minimize downtime when upgrading the database structure with changes that are not backwards-compatible. It’s an interesting question and I would like to visit some alternatives here. I will use PostgreSQL for this series of posts and walk through updatable views, INSTEAD OF Triggers, and the Rule System. Later, we’ll discuss alternatives available for other databases like MySQL.

This first post will give an overview of the problem and also the first implementation of the solution in PostgreSQL using updatable Views.

The Motivation

Software is like a living organism and as such, they evolve. It’s not surprising that the database schemas also evolve, and this brings us a problem: how to minimize downtime when performing upgrades? Or even further, is it possible to upgrade them without activating maintenance mode thereby making the service unavailable for our customers?

Let’s say that we want to push out an update 2.0. It’s a major update, and in this update, there are application code changes and changes to the database such as altered tables, dropped columns, new tables and so on. Checking the changelog, we notice that most of the database changes are backwards-compatible but a few modified tables are not so we can’t just push out the new database changes without breaking some functionality in the existing codebase. To avoid triggering errors while we upgrade the database, we need to shutdown the application servers, update the database, update the codebase, and then get the servers back and running again. That means that we need an unwanted maintenance window!

As per our definition of the problem, we want to get to the point where we don’t have to use this maintenance window, a point where the old and new codebase could coexist for a period of time while we upgrade the system. One solution is to not make changes that the current codebase can’t handle, but, as you may have already assumed, it isn’t really an option when we are constantly trying to optimize and improve our databases. Another option, then, would be to use PostgreSQL updatable views.

Updatable Views

PostgreSQL has introduced automatically updatable views in 9.3. The documentation[1] says that simple views are automatically updatable and the system will allow INSERT, UPDATE or DELETE statements to be used on the view in the same way as on a regular table. A view is automatically updatable if it satisfies all of the following conditions:

  • The view must have exactly one entry in its FROM list, which must be a table or another updatable view.
  • The view definition must not contain WITH, DISTINCT, GROUP BY, HAVING, LIMIT, or OFFSET clauses at the top level.
  • The view definition must not contain set operations (UNION, INTERSECT or EXCEPT) at the top level.
  • The view’s select list must not contain any aggregates, window functions, or set-returning functions.

Note that the idea is to give a simple mechanism that helps when using views, and if the view is automatically updatable the system will convert any INSERT, UPDATE or DELETE statement on the view into the corresponding statement on the underlying base table. This can also be used to increase the security granularity giving the power to define privilege that operates at the level. If using a WHERE clause in the view we can use the CHECK OPTION to prevent the user from being able to UPDATE or INSERT rows that are not in the scope of the view. For example, let’s say we have a view created to limit the user to view records from a specific country.  If the user changes the country of any record, those records would disappear from the view. The CHECK OPTION can help to prevent this from happening. I recommend reading the documentation for more information about how views work in PostgreSQL.


Using updatable views makes the implementation as simple as creating views. For our example I will use the below table:

We then changed the schema renaming the columns password to pwd, date_created to dt_created and added 2 more columns, pwd_salt and comment. The added columns are not a real problem because they can be either nullable or have a default value but the column name change is a problem. The changes are:

To make sure our application will work properly we’ve defined that the tables will be in a specific main schema, in this example is the PUBLIC schema and the views will be in the versioned schemas. In this case, if we have a change in one specific version that needs a view guaranteeing backwards-compatibility, we just create the view inside the versioned schema and apply the changes to the table in the main schema. The application will always define the “search_path” as “versioned_schema,main_schema”, which is “v_10, public” in this example:

As we can see, the application still sees the old schema, but does this work? What if someone updates the password of ID #3? Let’s check:

As we can see, the updatable view worked just like a charm! The new and old application codebase can coexist and work together while we roll up our upgrades. There are some restrictions, as explained in the documentation, like having only one table or view in the WHERE clause but for its simplicity, upgradable views do a great job. For more complex cases where we need to split/join tables? Well, we will discuss these in future articles and show how we can solve them with both TRIGGERS and the PostgreSQL Rule System.



Photo by Egor Kamelev from Pexels

Share this post

Comment (1)

  • james Reply

    should we only use SET search_path TO v_10, public in old application? the new application use the default search path. otherwise the new application will also see the old data

    February 26, 2019 at 4:09 pm

Leave a Reply