Buy Percona ServicesBuy Now!

How Binary Logs (and Filesystems) Affect MySQL Performance

 | May 4, 2018 |  Posted In: Benchmarks, InnoDB, Insight for DBAs, MySQL, MySQL 8.0


I want to take a closer look at MySQL performance with binary logs enabled on different filesystems, especially as MySQL 8.0 comes with binary logs enabled by default.

As part of my benchmarks of the MyRocks storage engine, I’ve noticed an unusual variance in throughput for the InnoDB storage engine, even though we spent a lot of time making it as stable as possible in Percona Server for MySQL. In the end, the culprit was enabled binary logs. There is also always the question, “If there is a problem with EXT4, does XFS perform differently?” To answer that, I will repeat the same benchmark on the EXT4 and XFS filesystems.

You can find our previous experiments with binary logs here:

Benchmark Setup

A short overview of the benchmark setup:

  • Percona Server for MySQL 5.7.21
  • InnoDB storage engine
  • In contrast to the previous benchmark, I enabled foreign keys, used REPEATABLE-READ isolation level, and I used UTF8 character sets. Because of these changes, the results are not really comparable with the previous results.
  • The dataset is the same: sysbench-tpcc with ten tables and 100 warehouses, resulting in a total of 1000 warehouses, and about a 90GB dataset size.
  • I will use innodb_buffer_pool_size 80GB, 70GB, and 60GB to emulate different IO loads and evaluate how that affects binary logs writes.

Initial Results

For the first run, let’s check the results without binary logs vs. with binary log enabled, but with sync_binlog=0:

Binary Log Performance

We can see that results without binary logs are generally better, but we can also see that with binary logs enabled and sync_binglog=0, there are regular drops to 0 for 1-2 seconds. This basically results in stalls in any connected application.

So, enabling binary logs may result in regular application stalls. The reason for this is that there is a limit on the size of the binary log file (max_binlog_size), which is 1GB. When the limit is reached, MySQL has to perform a binary log rotation. With sync_binlog=0, all previous writes to the binary log are cached in the OS cache, and during rotation, MySQL forces synchronous flushing of all changes to disk. This results in complete stalls every ~40 seconds (the amount of time it takes to fill 1GB of binary log in the above tests).

How can we deal with this? The obvious solution is to enable more frequent sync writes of binary logs. This can be achieved by setting sync_binlog > 0. The popular choice is the most strict, sync_binlog=1, providing the most guarantees. The strict setting also comes with noted performance penalties. I will also test sync_binlog=1000 and sync_binlog=10000, which means perform synchronous writes of binary logs every 1000 and 10000 transactions, respectively.

The Results

Binary Log Performance 1

The same results in a tabular format with median throughput (tps, more is better)

Bp sync_binlog 0 1 1000 10000 nobinlog
60 GB 4174.945 3598.12 3950.19 4205.165 4277.955
70 GB 5053.11 4541.985 4714 4997.875 5328.96
80 GB 5701.985 5263.375 5303.145 5664.155 6087.925


Some conclusions we can make:

  • sync_binlog=1 comes with the biggest performance penalty, but with minimal variance. This is comparable to running without binary logs.
  • sync_binlog=0 provides best (for enabled binary logs) performance, but the variance is huge.
  • sync_binlog=1000 is a good compromise, providing better performance than sync_binlog=1 with minimal variance.
  • sync_binlog=10000 might not be good, showing less variance than with 0, but it is still big.

So what value should we use? This is probably a choice between sync_binlog=1 or some value like 1000. It depends on your use case and your storage solution. In the case of slow storage, sync_binlog=1 may show a bigger penalty compared to what I can see on my enterprise SATA SSD SAMSUNG SM863.


All of the above results were on an EXT4 filesystem. Let’s compare to XFS. Will it show different throughput and variance?

Binary Log Performance 2

The median throughput in tabular format:

sync_binlog Buffer pool (GB) EXT4 XFS
0 60 4174.945 3902.055
0 70 5053.11 4884.075
0 80 5701.985 5596.025
1 60 3598.12 3526.545
1 70 4541.985 4538.455
1 80 5263.375 5255.38
1000 60 3950.19 3620.05
1000 70 4714 4526.49
1000 80 5303.145 5150.11
10000 60 4205.165 3874.03
10000 70 4997.875 4845.85
10000 80 5664.155 5557.61
No binlog 60 4277.955 4169.215
No binlog 70 5328.96 5139.625
No binlog 80 6087.925 5957.015


We can observe the general trend that median throughput on XFS is a little worse than with EXT4, with practically identical variance.

The difference in throughput is minimal. You can use either XFS or EXT4.

Hardware Spec

Supermicro server:

  • Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
  • 2 sockets / 28 cores / 56 threads
  • Memory: 256GB of RAM
  • Storage: SAMSUNG  SM863 1.9TB Enterprise SSD
  • Filesystem: ext4/xfs
  • Percona-Server-5.7.21-20
  • OS: Ubuntu 16.04.4, kernel 4.13.0-36-generic

Extra Raw Results, Scripts and Config

My goal is to provide fully repeatable benchmarks. To that effect, I’ve shared all the scripts and settings I used in the following GitHub repo:

Vadim Tkachenko

Vadim Tkachenko co-founded Percona in 2006 and serves as its Chief Technology Officer. Vadim leads Percona Labs, which focuses on technology research and performance evaluations of Percona’s and third-party products. Percona Labs designs no-gimmick tests of hardware, filesystems, storage engines, and databases that surpass the standard performance and functionality scenario benchmarks. Vadim’s expertise in LAMP performance and multi-threaded programming help optimize MySQL and InnoDB internals to take full advantage of modern hardware. Oracle Corporation and its predecessors have incorporated Vadim’s source code patches into the mainstream MySQL and InnoDB products. He also co-authored the book High Performance MySQL: Optimization, Backups, and Replication 3rd Edition.


  • sync_binlog=X where X > 0 seems like another source of variance as the 1 in X transactions now must wait while binlog writes from the last X transactions are synced. The stalls will be shorter than with sync_binlog=0, but they will be more frequent.

  • Vadim, what about using custom sysctl.conf settings? I usually change:

    vm.dirty_background_bytes = 41943040
    vm.dirty_bytes = 167772160
    vm.dirty_writeback_centisecs = 100

  • Vadim, what about using custom sysctl.conf settings? I usually change:


  • What about write cache setting for SSD? SM863 have at least 1Gb of DDR3 DRAM protected with capacitor, thus it should acts like as writeback cache on RAID controller during buffer flush load. IO saturation graph would be useful in such test.

  • > With sync_binlog=0, all previous writes to the binary log are cached in the OS cache, and during rotation, MySQL forces synchronous flushing of all changes to disk. This results in complete stalls every ~40 seconds (the amount of time it takes to fill 1GB of binary log in the above tests).

    Is this saying that, even with sync_binlog=0, MySQL does an fsync of the binary log during rotation? Or is there some other mechanism forcing synchronous flushing?

Leave a Reply