When (and how) to move an InnoDB table outside the shared tablespace

When (and how) to move an InnoDB table outside the shared tablespace


In my last post, “A closer look at the MySQL ibdata1 disk space issue and big tables,” I looked at the growing ibdata1 problem under the perspective of having big tables residing inside the so-called shared tablespace. In the particular case that motivated that post, we had a customer running out of disk space in his server who was looking for a way to make the ibdata1 file shrink. As you may know, that file (or, as explained there, the set of ibdata files composing the shared tablespace) stores all InnoDB tables created when innodb_file_per_table is disabled, but also other InnoDB structures, such as undo logs and data dictionary.

For example, when you run a transaction involving InnoDB tables, MySQL will first write all the changes it triggers in an undo log, for the case you later decide to “roll them back”. Long standing, uncommited transactions are one of the causes for a growing ibdata file. Of course, if you have innodb_file_per_table disabled then all your InnoDB tables live inside it. That was what happened in that case.

So, how do you move a table outside the shared tablespace and change the storage engine it relies on? As importantly, how does that affects disk space use? I’ve explored some of the options presented in the previous post and now share my findings with you below.

The experiment

I created a very simple InnoDB table inside the shared tablespace of a fresh installed Percona Server 5.5.37-rel35.1 with support for TokuDB and configured it with a 1GB buffer pool. I’ve used a 50G partition to host the ‘datadir’ and another one for ‘tmpdir’:

Here’s the table structure:

I populated it with 134 million rows using the following routine:

which resulted in the table below:

The resulting ibdata1 file was showing to have 11G, which accounted in practice for 100% of the datadir partition use then. What follows next is a few experiences I did by converting that table to use a different storage engine, moving it outside the shared tablespace, compressing it, and dumping and restoring the database back to see the effects in disk space use. I haven’t timed how long running each command took and focused mostly on the generated files size. As a bonus, I’ve also looked at how to extend the shared table space by adding an extra ibdata file.

#1) Converting to MyISAM

Technical characteristics and features apart, MyISAM tables are know to occupy less disk space than InnoDB’s ones. How much less depends on the actual table structure. Here I made the conversion in the most simplest way:

which created the following files (the .frm file already existed):

The resulting MyISAM files amounted for an additional 8.3G of disk space use:

I was expecting smaller files but, of course, the result depends largely on the data types of the columns composing the table. The problem (or the consequence) is that we end up with close to the double of the initial disk space being used:

As it happens with the other solutions presented in this section that migrate the target table outside the shared tablespace, the common/safest way to reclaim the freed (unused) space inside the ibdata1 file back to the operating system is by doing a dump & restore of the full database.

There’s an alternative approach with MyISAM though, which doesn’t involve dump & restore and only requires a MySQL restart. However, you need to convert all InnoDB tables to MyISAM, stop MySQL, delete all ib* files (there should be no remaining .ibd files after you’ve converted all InnoDB tables to MyISAM), and then restart MySQL again. Upon MySQL restart, ibdata1 will be re-created with it’s default initial size (more on this below). You can then convert the MyISAM tables back to InnoDB and if you have innodb_file_per_table enabled this time then the tables will be created with their own private tablespace file.

#2) Exporting the table to a private tablespace

Once you have innodb_file_per_table enabled you can move a table residing inside ibdata1 to it’s private tablespace (it’s own .ibd file) by either running ALTER TABLE or OPTIMIZE TABLE. Both commands create a “temporary” (though InnoDB, not MyISAM) table with it’s own tablespace file inside the database directory (and not in the tmpdir, as I believed it would happen), the rows from the target table being copied over there.

Here’s showing the temporary table (#sql-4f10_1) that was created while the process was still ongoing:

and the resulting .ibd file from when the process completed:

Note that the new joinit.ibd file is about 9.3G. Again, the process resulted in the use of extra disk space:

#3) Dump and restore: looking at the disk space use

As pointed, the way to reclaim unused disk space inside ibdata1 back to the file system (and consequently making it shrink) is by dumping the full database to a text file and then restoring it back. I’ve started by doing a simple full mysqldump encompassing all databases:

which created the following file:

I’ve then stopped MySQL, wiped out the full datadir and used the script mysql_install_db to (re-)create the system tables (though that’s not needed, I did it to level comparisons; once you have all InnoDB tables out of the system tablespace you can simply delete all ib* files along any .ibd and .frm files for related InnoDB tables), started MySQL again, and finally restored the backup:

This resulted in:


ibdata1 did shrink in the process (returning to the default* initial size) and we recovered back a couple of gigabytes that were not being used by the single InnoDB table that used to live inside it.

* The default value for innodb_data_file_path for the Percona Server release we used on the tests is “ibdata1:10M:autoextend”. However, the manual states that “the default behavior is to create a single auto-extending data file, slightly larger than 10MB“. Given that innodb_autoextend_increment is set to 8M by default what we get in practice is an initialized ibdata1 file of 18M, as seen above.

#4) Compressing the table

Back to the original scenario, with the test table still living in the shared tablespace, I’ve enabled innodb_file_per_table, set Barracuda as the innodb_file_format and then ran:

This resulted in an .ibd file with half the size of an uncompressed one:

The process was a lengthy one but resulted in considerable less disk space use than converting the table to MyISAM:

#5) Converting the table to TokuDB

I’ve used TokuDB version 7.1.6 (not the latest one), which was bundled in Percona Server 5.5.37-rel35.1.

As was the case with converting the InnoDB table to it’s own tablespace, a temporary table was created to intermediate the process, with the table definition residing in the test database directory:

However, TokuDB created a temporary file in the main datadir to copy the data into, show here at some point during the process:

Once the process completed the file tokuldNk5W4v disappeared and the data ended up in the _test_sql_7f51_1_main_a_2_19.tokudb file:

The new .tokudb file is so small compared to the other files obtained in the previous approaches that it almost goes unnoticed when looking at the disk space use:

Curiously, that file retained the name/reference of the temporary table it used, even though the temporary table file description (#sql-7f51_1.frm) disappeared as well; only joinit.frm remained under the test database directory.

I decided to do a dump & restore of the whole database to see what that would result in this case:

Once it was restored we found the ibdata1 file back to its initial default size and the disk space used by the datadir was down to a scant 1.1G. Curiously (again), the dump & restore procedure did fixed the name of the TokuDB table file:

The process of converting the resident InnoDB table to TokuDB was faster than compressing it with ROW_FORMAT=Compressed and resulted in a much smaller file. This is not to say that using TokuDB is the best solution but to point that the process can be accomplished in less time and make use of lesser extra disk space than InnoDB does, which can simply come up handy if you don’t have much space left. Also, remember the test was done with a not very large (and simple in structure) test table; you may need to check if yours can be converted to TokuDB and what changes to indexes you might need to do (if any).

#6) Expanding the shared tablespace

As previously mentioned, I’ve been using the default value of  “ibdata1:10M:autoextend” for innodb_data_file_path for my tests. If you have another partition with unused space available and you look only for a solution to the “running out of disk space” problem and don’t mind keeping your big table inside the shared tablespace, then you can expand it. That can be done by means of adding a second ibdata file to the tablespace definition. Of course, that only works if you create it outside the partition already hosting ibdata1.

To do so, you need to stop MySQL and verify the size of the ibdata1 file you have (list size in bytes as “ls -lh” will round it here):

I had available space on the /media/lvFernando2 partition so I decided to have ibdata2 created there. To do so, I’ve added the following 2 lines to my.cnf:

Then I restarted MySQL and confirmed that ibdata2 was created there upon initialization:

Three important things to note on this approach:

  1. There can be only one ibdata file listed in innodb_data_file_path configured with “autoextend” – the last one in the list.
  2. You need to redefine ibdata1 in innodb_data_file_path using it’s current size. Any other size won’t work.
  3. From the moment you redefined ibdata1 with it’s current size and added ibdata2 configured with “autoexend”, ibdata1 won’t grow any bigger; the common tablespace will be increased through ibdata2.

What the 3rd point really means in practice is that you need to plan this maneuver accordingly: if you still have space available in the partition that hosts ibdata1 and you want to use it first then you need to delay these changes until you get to that point. From the moment you add ibdata2 to the common tablespace definition new data will start to be added into it.


The little experiment I did helped explain how some of the solutions proposed in my previous post for moving an InnoDB table outside the shared tablespace would work in practice and, most importantly, how much more disk space would be needed along the process. It was interesting to see that none of them made use of the tmpdir when they created temporary tables to intermediate the table conversion process; those were always created on the main datadir. The test table I’ve used had only a bit more than 10G, far away from a 1TB-sized table, so the results I’ve got may differ from what you would find in a larger environment.

As complementary information, MySQL 5.6 allows for the creation of InnoDB tables having their private tablespaces living outside the datadir (but that must be defined at table creation time and can’t be changed by means of an ALTER TABLE) as well as transportable tablespaces (which allow for the copy of private tablespaces from one database server to another).


Share this post

Leave a Reply