Massive Data Processing in Adobe using Delta Lake

Yeshwanth Vijayakumar
Sr. Engineering Manager/Architect @ Adobe
Agenda

- Introduction
- What are we storing?
- Data Representation and Nested Schema Evolution
- Writer Worries and How to Wipe them Away
- Staging Tables FTW
- Datalake Replication Lag Tracking
- Performance Time!
Unified Profile Data Ingestion

Adobe Campaign
AEM
Adobe Analytics
Adobe AdCloud

Experience Data Model

Unified Profile
Single Tenant
Change Feed
Multi Tenant
Streaming Stats Generation
Linking Identities

Anonymous Identities

<table>
<thead>
<tr>
<th>IP Address</th>
<th>ECID</th>
<th>AMO ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.18.86.50</td>
<td>GT8ERW8tOK70g</td>
<td>kPL1</td>
</tr>
<tr>
<td>192.18.86.50</td>
<td>ZXBEUW8tLP7Qn</td>
<td>POKN</td>
</tr>
</tbody>
</table>

Known Identities

Online Data

- **Login ID**: arun@domain.com
 - ECID: ZXBEUW8tLP7Qn
 - Loyalty ID: 3690098
- **Email ID**: michelle@domain.com
 - ECID: GZYIB-h_hACHtIR
 - Loyalty ID: 5846890

Offline Data

- **Email ID**: arun@domain.com
 - Loyalty ID: 82167672165
- **Email ID**: rahul@domain.com
 - Loyalty ID: 34657616546
 - CRM ID: 2209
Data Layout At a Glance

An Idea about how the graph linkages are stored

<table>
<thead>
<tr>
<th>primaryId</th>
<th>relatedIds</th>
<th>field1</th>
<th>field2</th>
<th>field1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>123</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>456</td>
<td>456</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>d</td>
<td>e</td>
<td>l</td>
</tr>
<tr>
<td>789</td>
<td>789,101</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>101</td>
<td>789,101</td>
<td>x</td>
<td>u</td>
<td>p</td>
</tr>
</tbody>
</table>

Conditions
- primaryId does not change
- relatedIds can change
New Record comes in linking 103 with 789 and 101

<table>
<thead>
<tr>
<th>primaryId</th>
<th>relatedId</th>
<th>field1</th>
<th>field2</th>
<th>field1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103,789,101</td>
<td>q</td>
<td>w</td>
<td>r</td>
</tr>
</tbody>
</table>

Causes a cascading change in rows of 789 and 101

<table>
<thead>
<tr>
<th>primaryId</th>
<th>relatedId</th>
<th>field1</th>
<th>field2</th>
<th>field1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103,789,101</td>
<td>q</td>
<td>w</td>
<td>r</td>
</tr>
<tr>
<td>789</td>
<td>103,789,101</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>101</td>
<td>103,789,101</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>
Main Access Pattern
Multiple Queries over 1 consolidated row

```javascript
rawRecords
  .groupBy("relatedIds")
  .mapPartitons{
    (relatedIds, records) => {
      results = executeQueries(records)
      saveResultsToSink(results, relatedIds)
    }
  }
```
Complexities?

- **Nested Fields**
 - a.b.c.d[*].e nested hairiness!
 - Arrays!
 - MapType

- **Every Tenant has a different Schema!**

- **Schema evolves constantly**
 - Fields can get deleted, updated.

- **Multiple Sources**
 - Streaming
 - Batch
Scale?

- Tenants have 10+ Billions of rows
- PBs of data
- Million RPS peak across the system
- Triggers multiple downstream applications
 - Segmentation
 - Activation
What is DeltaLake?

From delta.io: Delta Lake is an open-source project that enables building a Lakehouse architecture on top of existing storage systems such as S3, ADLS, GCS, and HDFS.

Key Features

- ACID Transactions
- Time Travel (data versioning)
- Uses Parquet Underneath
- Schema Enforcement and Schema Evolution
- Audit History
- Updates and Deletes Support
Delta lake in Practice

UPsert

dataframe
 .write
 .format("parquet")
 .save("/data")

dataframe
 .write
 .format("delta")
 .save("/data")

```
deltaTable.as("oldData")
 .merge(
   newData.as("newData"),
   "oldData.id = newData.id")
 .whenMatched
 .update(Map("id" -> col("newData.id")))
 .whenNotMatched
 .insert(Map("id" -> col("newData.id")))
 .execute()
```

SQL Compatible

```
UPDATE events SET eventType = 'click' WHERE eventType = 'clk'

UPDATE delta."/data/events/" SET eventType = 'click' WHERE eventType = 'clk'
```
Writer Worries and How to Wipe them Away

- **Concurrency Conflicts**

<table>
<thead>
<tr>
<th></th>
<th>INSERT</th>
<th>UPDATE, DELETE, MERGE INTO</th>
<th>COMPACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>Cannot conflict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDATE, DELETE, MERGE INTO</td>
<td>Can conflict</td>
<td>Can conflict</td>
<td></td>
</tr>
<tr>
<td>COMPACTION</td>
<td>Cannot conflict</td>
<td></td>
<td>Can conflict</td>
</tr>
</tbody>
</table>

- **Column size**
 - When individual column data exceeds 2GB, we see degradation in writes or OOM

- **Update frequency**
 - Too frequent updates cause underlying filestore metadata issues.
 - This is because every transaction on an individual parquet causes CoW,
 - More updates => more rewrites on HDFS

- **Too Many small files !!!**
CDC (existing)

Mutation Apps

1. Send Request to Cosmos

2. Ack

3. Emit CDC

CosmosDB

Consumed by
• Stats
• Edge
• etc

Batch Ingestion / Streaming Ingestion / API based Ingest
Dataflow with DeltaLake

<table>
<thead>
<tr>
<th>primaryId</th>
<th>relatedId</th>
<th>field1</th>
<th>field2</th>
<th>field1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103,789,101</td>
<td>q</td>
<td>w</td>
<td>r</td>
</tr>
<tr>
<td>789</td>
<td>103,789,101</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>101</td>
<td>103,789,101</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

Cosmos DB

Change Feed CDC

Long Running Streaming Application

Staging Table

APPEND only!
Partitioned by tenant and 15 min time intervals

Raw Table (per tenant)

<table>
<thead>
<tr>
<th>primaryId</th>
<th>relatedId</th>
<th>jsonString</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103,789,101</td>
<td><jsonStr></td>
</tr>
<tr>
<td>789</td>
<td>103,789,101</td>
<td><jsonStr></td>
</tr>
<tr>
<td>101</td>
<td>103,789,101</td>
<td><jsonStr></td>
</tr>
</tbody>
</table>

CDC Dumper

Backfill

TenantLock in Redis

Fetch Records to process

Processor

Check for Work every X minutes

UPSERT/DELETE into Raw Table
Staging Tables FTW

Fan-In pattern vs Fan-out

- **Multiple Source Writers Issue Solved**
 - By centralizing all reads from CDC, since ALL writes generate a CDC

- **Staging Table in APPEND ONLY mode**
 - No conflicts while writing to it

- **Filter out. Bad data > thresholds before making it to Raw Table**

- **Batch Writes by reading larger blocks of data from Staging Table**
 - Since it acts time aware message buffer
Staging Table Logical View

```xml
<TSKEY= 2021-01-01-09-15-Quarter=01 > -
  [ x1-cdcRecord, x2-cdcRecord, x3-cdcRecord, x5-cdcRecord ]

<TSKEY= 2021-01-01-09-15-Quarter=02 > -
  [ x2-cdcRecord, x7-cdcRecord ]

<TSKEY= 2021-01-01-09-15-Quarter=03 > -
  [ x6-cdcRecord, x9-cdcRecord ]
```

ProgressMap

<table>
<thead>
<tr>
<th>Org</th>
<th>Phase 1 LastSuccessfulTSKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>tenant1</td>
<td>2021-01-01-09-15-Quarter=01</td>
</tr>
<tr>
<td>tenant2</td>
<td>2021-01-02-07-10-Quarter=04</td>
</tr>
<tr>
<td>tenant3</td>
<td>2021-01-01-11-19-Quarter=03</td>
</tr>
</tbody>
</table>
Why choose JSON String format?

- We are doing a lazy Schema on-read approach.
 - Yes. this is an anti-pattern.

- Nested Schema Evolution was not supported on update in delta in 2020
 - Supported with latest version

- We want to apply conflict resolution before upsert-ing
 - Eg. resolveAndMerge(newData, oldData)
 - UDF’s are strict on types, with the plethora of difference schemas , it is crazy to manage UDF per org in Multi tenant fashion
 - Now we just have simple JSON merge udfs
 - We use json-iter which is very efficient in loading partial bits of json and in manipulating them.

- Don’t you lose predicate pushdown?
 - We have pulled out all main push-down filters to individual columns
 - Eg. timestamp, recordType, id, etc.
 - Profile workloads are mainly scan based since we can run 1000’s of queries at a single time.
 - Reading the whole JSON string from datalake is much faster and cheaper than reading from Cosmos for 20% of all fields.
Schema On Read is more future safe approach for raw data

- Wrangling Spark Structs is not user friendly
- JSON schema is messy
 - Crazy nesting
 - Add maps to the equation, just the schema will be in MBs

- Schema on Read using Json-iter means we can read what we need on a row by row basis

- Materialized Views WILL have structs!
Partition Scheme of Raw records

- **RawRecords Delta Table**
 - recordType
 - dataSetId
 - **timestamp** (key-value records will use DEFAULT value)

 z-order on primaryId

z-order - Colocate column information in the same set of files using locality-preserving space-filling curves
1. `%%fs
2. `ls /tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta`

<table>
<thead>
<tr>
<th>path</th>
<th>name</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>/tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/</td>
<td>_delta_log/</td>
<td>0</td>
</tr>
<tr>
<td>/tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/</td>
<td>rt=HIVE_DEFAULT_PARTITION</td>
<td>0</td>
</tr>
<tr>
<td>/tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/</td>
<td>rt=identity/</td>
<td>0</td>
</tr>
<tr>
<td>/tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/</td>
<td>rt=keyvalue/</td>
<td>0</td>
</tr>
<tr>
<td>/tmp/test/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/</td>
<td>rt=timeseries/</td>
<td>0</td>
</tr>
</tbody>
</table>

Showing all 5 rows.

1. `%%fs
2. `ls adl://datalakeppdocjhd2.azuredatalakestore.net/core/profile/atlas/v1/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=timeseries/ek=5d64ec86b7469b16a8cf1295/`

<table>
<thead>
<tr>
<th>path</th>
<th>name</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>adl://datalakeppdocjhd2.azuredatalakestore.net/core/profile/atlas/v1/4932497857C1DF40A49423C@AdobeOrg.raw.partitioned.delta/rt=timeseries/ek=5d64ec86b7469b16a8cf1295/</td>
<td>tsdate=50376-03-13/</td>
<td>0</td>
</tr>
</tbody>
</table>

Showing all 1 rows.
Replication Lag – 2 types

- **CDC Lag from Kafka**
 - Tells us how much more work we need to do to catch up to write to Staging Table

- **How we track Lag on a per tenant basis**
 - We track Max(TimeStamp) in CDC per org
 - We track Max(TSKEY) processed in Processor
 - Difference gives us rough lag of replication
Merge/UPSERT Performance

Live Traffic Use case: How long does it take X CDC messages to get upserted into Raw Table

<table>
<thead>
<tr>
<th>Action: UPSERT CDC stage into fragment</th>
<th>Time Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 K CDC Records – Maps to 100k Rows in Raw Table</td>
<td>15 seconds</td>
</tr>
<tr>
<td>1.7 Million CDC Records – Maps to 1 Million Rows in Raw Table</td>
<td>61 seconds</td>
</tr>
</tbody>
</table>

spark.sql("set spark.databricks.delta.autoCompact.enabled = true")
spark.sql("set spark.databricks.delta.optimizeWrite.enabled = true")
Job Performance Time!

<table>
<thead>
<tr>
<th></th>
<th>Hot Store (NoSQL Store)</th>
<th>Delta Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Data</td>
<td>1 TB</td>
<td>64 GB</td>
</tr>
<tr>
<td>Number of Partitions</td>
<td>80</td>
<td>189</td>
</tr>
<tr>
<td>Job Cores Used</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Job Runtime</td>
<td>3 hours</td>
<td>25 mins</td>
</tr>
</tbody>
</table>
TakeAways

• Scan IO speed from datalake >>> Read from Hot Store
• Reasonably fast eventually consistent replication within minutes
• More partitions means better Spark executor core utilization
• Potential to aggressively TTL data in hot store
• More downstream materialization !!!
• Incremental Computation Framework thanks to Staging tables!