

Shifting from Capture-First to
Query-First Database Architectures

Hello!
I am Rob Dickinson
CTO at Resurface Labs

You can find me at @robfromboulder

Agenda
Review database landscape
Review capture-first method
Contrast with query-first thinking
Method for query-first projects
Cheat sheet for DB selection 🥳

Let’s talk databases…

How many databases are out there?

😱

(from db-engines.com)

From “Designing Data-Intensive
Applications” by Martin Kleppmann

From “Designing Data-Intensive
Applications” by Martin Kleppmann,
modified by Rob without endorsement

How did we get here?

Long long ago…

ORACLE

POSTGRESQL

MYSQL

SQL SERVER

Database development for dinosaurs

• Select a database platform
• Define schema
• Start loading & integrating
• Tune normalization & queries
• Add materialized views & query caching
• Switch platforms if all else fails

ß this was easy! 💸

🥱 this is “capture-first” thinking!
queries arrive too late to influence DB choice

From “Designing Data-Intensive
Applications” by Martin Kleppmann,
modified by Rob without endorsement

How to tackle this “paradox of choice”?

• Bribe a trusted data architect or DBA 🍻
• Look at relevant benchmarks: TPC-XX
• What’s missing from your CV/resume?
• Stick to what you know?
• Dart board? Magic 8 ball?

The best way to pick a database is…

Work backwards from
target read workloads

🔥 this is a “query-first” approach

🤔 kinda like TDD for database architecture

Not saying that
write performance can be ignored
or write benchmarks are bad

Why focus on read workloads?

🔥 For most systems, reads are the locus of value

• Zen koan: what’s the value of a write that can’t be read?
• Writes are just a cost of expected reads

Different databases have different tricks for reads:
• Indexes are extra writes to accelerate reads
• Replication is extra writes to ensure reads

Query-first method for DB selection

1. Define seed data that approximates a working system
2. Run read workloads for seed data on multiple DBs
3. Select the database with best workload fit (ops/sec)
4. Then optimize for loading/maintaining data
5. If no single database platform is a match:

Use a distributed query engine like Trino
Replicate data through queues like Kafka
Or consider other tricks

A query-first example

• Resurface is a purpose-built database for API traffic

• We built our v1 product around Presto+Pulsar
• We obsessed over ingest/indexing performance
• Performance for actual customer queries was terrible 😱

• We started v2 with 1 year of high-quality data
• Defined queries for identifying failures, slowdowns, and threats
• Prototyped on Trino memory connector, 🚀 but not shippable
• Tried on Trino+Redis, too much network time 😢
• Tried on Trino+CSV, better but not awesome 😕
• Built custom Trino connector & in-memory storage 🤩

From “Designing Data-Intensive
Applications” by Martin Kleppmann

Focus on
reads

Read algorithms
Cache: keys/values in hash table

O(1) for a value

B-tree: rows in primary tree, indexes in other trees
O(log n) for a row

Columnar: one tree per column, rows are links across trees
O(log n) for a column – but fewer I/Os than b-tree
O(log n) * k for a row with k columns

LSM: keys/values with leveled storage, background merging
O(n) for a value

M/R: distributed table scan, partition elimination
O(n) for any transformation – highest I/Os of any option

normal reaction to big-O notation

Types of read workloads
(read I/Os on log scale)

Read Workload Category Description

Fetch value for single key Key/Value Returns unstructured value

Fetch values for related keys Key/Value Returns collection of values

Find single row with criteria OLTP Returns tuple (row of named columns) using column indexes

Find group of rows with criteria OLTP Returns collection of tuples using column indexes

Read rows within transaction OLTP Returns value based on transaction isolation level

Join subset of rows & related rows OLAP Returns collection of tuples joined across multiple tables

Join/summarize for few columns OLAP Returns count/histogram on a limited set of columns

Find/join/summarize for all columns DSS Returns data transformation computed against all available columns

Read workloads by database

READ WORKLOAD
CACHE

Redis,
Memcached

LSM

Cassandra, HBase,
RocksDB, LevelDB

BTREE

MySQL, Postgresql,
SQLite, SQL Server

COLUMNAR

Druid, Iceberg,
Parquet, Orc

M/R

Hadoop,
Resurface

Fetch value for single key 🥳 😀 🤔

Fetch values for related keys 😀 🥳 😀

Find single row with criteria 😀 😀 🥳

Find group of rows with criteria 😀 🥳

Read row within transaction 🤔 🥳

Join subset of rows & related rows 🥳 😀

Join/summarize for few columns 😀 🥳 😀

Find/join/summarize for all columns 😱 😱 🥳

With ❤ from

Super-columnar queries (all columns)

Queues vs queries

Postgresql

Iceberg

Kafka

Trino

IcebergPostgresql

Advanced read optimizations

🤩 Immutable writes as safe transactions
In-memory storage via page cache
Push queries closer to data

😍 Use computed (virtual) columns
Use optimized storage when table scanning

🧐 Move data in-memory to eliminate device I/O
Use local/embedded store to eliminate network

With query-first methods,
the possibilities are endless

Thank you!
Any questions?

You can find me at @robfromboulder
or rob@resurface.io

