

PERCONA LIVEONLINE MAY 12 - 13th 2021

Shards all the way down

Building fast and highly concurrent databases on modern hardware

~\$ whoami

Avishai Ish-Shalom (@nukemberg)

Developer Advocate @ ScyllaDB

About ScyllaDB

- The Real-Time Big Data Database
- Drop-in replacement for Apache Cassandra and Amazon DynamoDB
- 10X the performance & low tail latency
- Open Source, Enterprise and Cloud options
- Founded by the creators of KVM hypervisor
- HQs: Palo Alto, CA, USA; Herzelia, Israel; Warsaw, Poland

The universal scalability law (USL)

1.

How a database is built

Or at least, MySQL/Postgres et-al

Basic architecture

Basic architecture

- Process/thread per client connection
- N storage/IO threads
- Thread MUTEX Locks to maintain storage consistency

Standard "Shared memory" architecture

2.

20 years of hardware evolution in 5 minutes

RAM Price by year

35 YEARS OF MICROPROCESSOR TREND DATA

What happened?

- Per thread performance plateaued
- Cores: 1 => 256
- RAM: 2GB => 2TB
- Disk space: 10GB => 10TB
- Disk seek time: 10-20ms => 20µs
- Network throughput: 1Gbps => 100Gbps

AWS u-24tb1.metal: 224 cores, 448 threads, 24TB RAM

Remember the USL?

What's going on?

- MySQL max out around 48 cores
- Context switch ~1-2μs
- 10 Context switches is a missed disk seek
- Locks, locks and damn locks
- Because shared memory

Non Uniform Memory Access (NUMA)

The CPU-RAM-storage gap

- Memory seek is ~100 CPU cycles
- NVMe seek is ~1000 memory seeks

3.

The database, reimagined

Let's start from first principles

How do we use the hardware?

- No locks
- No shared memory
- No coordination/synchronization
- No context switches
- No memory copies

Shard per core

Share nothing, block nothing

Sharding/partitioning

- Common concept in distributed databases
- Break the system to N non-interacting parts
- Usually done by hash (partition_key) % N
- Data/load may be unbalanced
 - Fact of life in distributed databases
 - Logical mapping of data shards to core shards

- Open source framework, powering Scylla, RedPanda, ValueStore
- A "mini operating system in userspace"
- Task scheduler, I/O scheduler
- Fully asynchronous userspace coroutines
- Direct I/O, self managed cache (bypass pagecache)
- One thread per core, one shard per core

CPUs

Shard per Core

Traditional Stack

Lock contention Cache contention NUMA unfriendly

SeaStar's Sharded Stack

No contention Linear scaling NUMA friendly

Unified Cache

Unified Cache

Conclusion

Hardware	Software	Distributed
Changed	Is the new	Architectures for
	bottleneck	the rescue

Any questions?

You can find me at:

- @nukemberg
- nukemberg@scylladb.com

PERCONA LIVEONLINE MAY 12 - 13th 2021