


Shards all the way down

Building fast and highly concurrent 
databases on modern hardware



~$ whoami
Avishai Ish-Shalom (@nukemberg)
Developer Advocate @ ScyllaDB

3



4

About ScyllaDB

+ The Real-Time Big Data Database

+ Drop-in replacement for Apache Cassandra 
and Amazon DynamoDB

+ 10X the performance & low tail latency

+ Open Source, Enterprise and Cloud options

+ Founded by the creators of KVM hypervisor

+ HQs: Palo Alto, CA, USA; Herzelia, Israel; 
Warsaw, Poland

About ScyllaDB



The universal scalability law (USL)

5

Diminishing 
returns: 
contention / 
queueing

Negative 
returns: 
coherency / 
consensus / 
synchronization

Load/resources



1.
How a database is built
Or at least, MySQL/Postgres et-al



Basic architecture

7



Basic architecture

● Process/thread per client connection
● N storage/IO threads
● Thread MUTEX Locks to maintain storage consistency

Standard “Shared memory” architecture

8



2.
20 years of hardware 
evolution in 5 minutes



10



11



What happened?

12

● Per thread performance plateaued
● Cores: 1 => 256
● RAM: 2GB => 2TB
● Disk space: 10GB => 10TB
● Disk seek time: 10-20ms => 20µs
● Network throughput: 1Gbps => 100Gbps

AWS u-24tb1.metal: 224 cores, 448 threads, 24TB RAM



Remember the USL?

13



What’s going on?

● MySQL max out around 48 cores
● Context switch ~1-2µs
● 10 Context switches is a missed disk seek
● Locks, locks and damn locks
● Because shared memory

14



Non Uniform Memory Access (NUMA)

15



The CPU-RAM-storage gap

● Memory seek is ~100 CPU cycles
● NVMe seek is ~1000 memory seeks

16



3.
The database, reimagined
Let’s start from first principles



How do we use the hardware?

● No locks
● No shared memory
● No coordination/synchronization
● No context switches
● No memory copies

18



Shard per core
Share nothing, block nothing

19



Sharding/partitioning

● Common concept in distributed databases
● Break the system to N non-interacting parts
● Usually done by hash(partition_key) % N
● Data/load may be unbalanced

○ Fact of life in distributed databases 🤷
○ Logical mapping of data shards to core shards

20



Seastar

● Open source framework, powering Scylla, RedPanda, ValueStore
● A “mini operating system in userspace”
● Task scheduler, I/O scheduler
● Fully asynchronous - userspace coroutines
● Direct I/O, self managed cache (bypass pagecache)
● One thread per core, one shard per core

21



Shard per Core

Cassandra

TCP/IPScheduler

queuequeuequeuequeuequeueThreads

NIC
Queues

Ke
rn

el

Traditional Stack SeaStar’s Sharded Stack

Memory

Lock contention
Cache contention
NUMA unfriendly

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel 
(isn’t 

involved)

Userspace

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel 
(isn’t 

involved)

Userspace

TCP/IP

queuequeuequeuequeuequeuesmp queue

NIC
Queue

Kernel 
(isn’t 

involved)

Userspace

No contention
Linear scaling
NUMA friendly

Core
Database

Task Scheduler

queuequeuequeuequeue
smp queue

Userspace

NIC
Queue

22



Unified Cache

Cassandra Scylla

Key 
cache

Row 
cache

Linux page cache

SSTables

Unified cache

SSTables

App 
thread

Kernel

SSD

Page fault
Suspend thread

Initiate I/O
Context switch

I/O 
completes

Interrupt
Context 
switch

Map page
Resume 
thread

Page fault

On-heap /
Off-heap

23

Shared 
memory;
NUMA 
unfriendly



Unified Cache

Cassandra Scylla

Key 
cache

Row 
cache

Linux page cache

SSTables

Unified cache

SSTables

Complex Tuning

On-heap /
Off-heap

24



Conclusion

Hardware

Changed

Software

Is the new 
bottleneck

Distributed

Architectures for 
the rescue

25



26

Thanks!
Any questions?
You can find me at:

● @nukemberg 
● nukemberg@scylladb.com



27


