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About ScyllaDB

+ The Real-Time Big Data Database

+ Drop-in replacement for Apache Cassandra 
and Amazon DynamoDB

+ 10X the performance & low tail latency

+ Open Source, Enterprise and Cloud options

+ Founded by the creators of KVM hypervisor

+ HQs: Palo Alto, CA, USA; Herzelia, Israel; 
Warsaw, Poland

About ScyllaDB



The universal scalability law (USL)
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Diminishing 
returns: 
contention / 
queueing

Negative 
returns: 
coherency / 
consensus / 
synchronization

Load/resources



1.
How a database is built
Or at least, MySQL/Postgres et-al



Basic architecture
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Basic architecture

● Process/thread per client connection
● N storage/IO threads
● Thread MUTEX Locks to maintain storage consistency

Standard “Shared memory” architecture
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2.
20 years of hardware 
evolution in 5 minutes
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What happened?
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● Per thread performance plateaued
● Cores: 1 => 256
● RAM: 2GB => 2TB
● Disk space: 10GB => 10TB
● Disk seek time: 10-20ms => 20µs
● Network throughput: 1Gbps => 100Gbps

AWS u-24tb1.metal: 224 cores, 448 threads, 24TB RAM



Remember the USL?
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What’s going on?

● MySQL max out around 48 cores
● Context switch ~1-2µs
● 10 Context switches is a missed disk seek
● Locks, locks and damn locks
● Because shared memory

14



Non Uniform Memory Access (NUMA)
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The CPU-RAM-storage gap

● Memory seek is ~100 CPU cycles
● NVMe seek is ~1000 memory seeks
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3.
The database, reimagined
Let’s start from first principles



How do we use the hardware?

● No locks
● No shared memory
● No coordination/synchronization
● No context switches
● No memory copies
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Shard per core
Share nothing, block nothing
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Sharding/partitioning

● Common concept in distributed databases
● Break the system to N non-interacting parts
● Usually done by hash(partition_key) % N
● Data/load may be unbalanced

○ Fact of life in distributed databases 🤷
○ Logical mapping of data shards to core shards
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Seastar

● Open source framework, powering Scylla, RedPanda, ValueStore
● A “mini operating system in userspace”
● Task scheduler, I/O scheduler
● Fully asynchronous - userspace coroutines
● Direct I/O, self managed cache (bypass pagecache)
● One thread per core, one shard per core
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Shard per Core
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Unified Cache

Cassandra Scylla

Key 
cache

Row 
cache

Linux page cache

SSTables

Unified cache

SSTables

App 
thread

Kernel

SSD

Page fault
Suspend thread

Initiate I/O
Context switch

I/O 
completes

Interrupt
Context 
switch

Map page
Resume 
thread

Page fault

On-heap /
Off-heap
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Shared 
memory;
NUMA 
unfriendly



Unified Cache

Cassandra Scylla

Key 
cache

Row 
cache

Linux page cache

SSTables

Unified cache

SSTables

Complex Tuning

On-heap /
Off-heap

24



Conclusion

Hardware

Changed

Software

Is the new 
bottleneck

Distributed

Architectures for 
the rescue
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Thanks!
Any questions?
You can find me at:

● @nukemberg 
● nukemberg@scylladb.com
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