17 Things Developers should know about Databases

Peter Zaitsev
CEO, Percona
Percona University Istanbul
October 4th, 2019
Who Are you?

More Developer?

More OPS?
Ops

Focused on Database Only

Generalist
What Programming Languages does your team use?
Devs vs Ops

DevOps suppose to have solved it but tension is still common between Devs and Ops

Especially with Databases which are often special snowflake

Especially with larger organizations
Large Organizations

Ops vs Ops have conflict too
Devs vs Ops Conflict

<table>
<thead>
<tr>
<th>Devs</th>
<th>Ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Why is this stupid database always the problem.</td>
<td>• Why do not learn schema design</td>
</tr>
<tr>
<td>• Why can’t it just work and work fast</td>
<td>• Why do not you write optimized queries</td>
</tr>
<tr>
<td></td>
<td>• Why do not you think about capacity planning</td>
</tr>
</tbody>
</table>
Database Responsibility

Shared Responsibility for Ultimate Success
Top Recommendations for Developers
You can’t build great database powered applications if you do not understand how databases work

Schema Design

Power of the Database Language

How Database Executes the Query
Query Execution Diagram
EXPLAIN

Which Queries are Causing the Load

<table>
<thead>
<tr>
<th>Environment</th>
<th>Query</th>
<th>Load</th>
<th>Query Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>mystest</td>
<td>select c from sbtest1 where id=?</td>
<td>1.18</td>
<td>953.18</td>
</tr>
<tr>
<td>n/a</td>
<td>update warehouse1 set w_ytd = w_ytd + 1</td>
<td>0.35</td>
<td>497.32</td>
</tr>
<tr>
<td>pmm-managed</td>
<td>select d_next_o_id, d_tax from district1</td>
<td>0.10</td>
<td>6.23</td>
</tr>
<tr>
<td>postgres</td>
<td>update district1 set d_ytd = d_ytd + 1</td>
<td>0.09</td>
<td>6.24</td>
</tr>
<tr>
<td></td>
<td>commit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>select i_price, i_name, i_data from item1</td>
<td>0.08</td>
<td>20.48</td>
</tr>
<tr>
<td></td>
<td>insert into new_orders1 (no_o_id, n...</td>
<td>0.06</td>
<td>62.32</td>
</tr>
<tr>
<td></td>
<td>select count(distinct (s_i_id)) from orders</td>
<td>0.05</td>
<td>6.23</td>
</tr>
<tr>
<td>mysql2</td>
<td>select o_id from orders1 o, (select ...</td>
<td>0.04</td>
<td>0.62</td>
</tr>
</tbody>
</table>

© 2019 Percona.
Why Are they Causing this Load

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Rate/Sec</th>
<th>Sum</th>
<th>Per Query Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Count</td>
<td>104.05 (per sec)</td>
<td>374.58 k (4.73% of total)</td>
<td>183.66 ms avg</td>
</tr>
<tr>
<td>Query Time</td>
<td>19.00 load</td>
<td>18.59:56 (29.73% of total)</td>
<td>1.13 ms avg</td>
</tr>
<tr>
<td>Lock Time</td>
<td>0.11 (avg load)</td>
<td>0.06:42 (1.35% of total 0.01% of query time)</td>
<td>6.20 ms avg</td>
</tr>
<tr>
<td>Innodb IO Read Wait</td>
<td>0.61 (avg load)</td>
<td>0.36:44 (6.10% of total 3.38% of query time)</td>
<td>0.00 avg</td>
</tr>
<tr>
<td>Innodb Read Ops</td>
<td>52.35 (per sec)</td>
<td>188.45 k (7.62% of total)</td>
<td>8.22 KB avg</td>
</tr>
<tr>
<td>Innodb Read Bytes</td>
<td>857.64 KB (per sec)</td>
<td>3.09 GB (7.62% of total 16.38 KB avg io size)</td>
<td>4.69 avg</td>
</tr>
<tr>
<td>Innodb Distinct Pages</td>
<td>-</td>
<td>-</td>
<td>100.00 avg</td>
</tr>
<tr>
<td>Rows Sent</td>
<td>10.41 k (per sec)</td>
<td>37.465 mi (30.52% of total)</td>
<td>12.47 KB avg</td>
</tr>
<tr>
<td>Bytes Sent</td>
<td>1.30 MB (per sec)</td>
<td>4.67 GB (30.28% of total 124 bytes bytes/row)</td>
<td>10.47 k avg</td>
</tr>
<tr>
<td>Rows Examined</td>
<td>1.14 m (per sec)</td>
<td>4.11 b (39.17% of total 105.79 per row sent)</td>
<td>-</td>
</tr>
<tr>
<td>External Sorts (Filesort)</td>
<td>104.05 (per sec)</td>
<td>374.58 k (49.93% of total 100.0% of queries)</td>
<td>-</td>
</tr>
<tr>
<td>Full Table Scans</td>
<td>0.01 (per sec)</td>
<td>40.00 b (0.01% of total 0.01% of queries)</td>
<td>-</td>
</tr>
<tr>
<td>Queries Requiring Tmp Table In Memory</td>
<td>104.05 (per sec)</td>
<td>374.58 k (95.17% of total 100.0% of queries)</td>
<td>-</td>
</tr>
</tbody>
</table>
How to Improve their Performance

Example

```sql
SELECT DISTINCT c
FROM sbtest1
WHERE id BETWEEN 5559 AND 5658
ORDER BY c
```

CREATE

```sql
CREATE TABLE `sbtest1` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `k` int(10) unsigned NOT NULL DEFAULT '0',
  `c` char(120) NOT NULL DEFAULT '',
  `pad` char(60) NOT NULL DEFAULT '',
  PRIMARY KEY (`id`),
  KEY `k_1` (`k`)
) ENGINE=InnoDB AUTO_INCREMENT=100000001 DEFAULT
```
Check out PMM

http://pmmdemo.percona.com

PMM v 2 is now GA
How are Queries Executed?

- Single Threaded
- Single Node
- Distributed
Indexes

Indexes are Must

Indexes are Expensive
Capacity Planning

No Database can handle “unlimited scale”

Scalability is very application dependent

Trust Measurements more than Promises

Can be done or can be done Efficiently?
Vertical and Horizontal Scaling

Vertical Scaling

Add Hardware
Add Hardware
Add Hardware
Datacenter

Horizontal Scaling

Logically Provision
Logically Provision
Logically Provision

Scale

Scale
Scalable != Efficient

The Systems which promote a scalable can be less efficient

Hadoop, Cassandra, TiDB are great examples

By only the wrong thing you can get in trouble
TiDB Scalability (Single Node)

Query 1: COUNT(*)

Query 2: simple GROUP BY

Query 3: complex WHERE filter

Query 4: complex GROUP BY + ORDER BY

© 2019 Percona.
TiDB Efficiency

TiDB and MySQL - point selects - sysbench

Threads

<table>
<thead>
<tr>
<th>Threads</th>
<th>TiDB</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2206.78</td>
<td>10913.22</td>
</tr>
<tr>
<td>4</td>
<td>9271.65</td>
<td>40806.5</td>
</tr>
<tr>
<td>8</td>
<td>15502.08</td>
<td>68586.35</td>
</tr>
<tr>
<td>16</td>
<td>21452.76</td>
<td>45733.17</td>
</tr>
<tr>
<td>32</td>
<td>23232.79</td>
<td>46652.6</td>
</tr>
<tr>
<td>64</td>
<td>24531.05</td>
<td>103170.85</td>
</tr>
<tr>
<td>128</td>
<td>25441.24</td>
<td>250996.23</td>
</tr>
</tbody>
</table>
Throughput != Latency

If I tell you system can do 100,000 queries/sec would you say it is fast?
Speed of Light Limitations

High Availability Design Choices

You want instant durable replication over wide geography or Performance?

Understanding Difference between High Availability and Disaster Recovery protocols

Network Bandwidth is not the same as Latency
Also Understand

Connections to the database are expensive

Especially if doing TLS Handshake

Query Latency Tends to Add Up

Especially on real network and not your laptop
Law of Gravity

Shitty Application at scale will bring down any Database
Scale Matters

- Developing and Testing with Toy Database is risky
- Queries Do not slow down linearly
- The slowest query may slow down most rapidly
Memory or Disk

Data Accessed in memory is much faster than on disk

It is true even with modern SSDs

SSD accesses data in large blocks, memory does not

Fitting data in Working Set
Newer is not Always Faster

- Upgrading to the new Software/Hardware is not always faster
- Test it out
- Defaults Change are often to blame
Upgrades are needed but not seamless

Major Database Upgrades often require application changes

Having Conversation on Application Lifecycle is a key
Character Sets

Performance Impact

Pain to Change

Wrong Character Set can cause Data Loss
Character Sets

MySQL 5.7 utf8mb4_general_ci (default) and latin1

https://per.co.na/MySQLCharsetImpact
Less impact In MySQL 8

MySQL 8.0 utf8mb4_0900_ai_ci and latin1

Throughput, tps

Threads

utf8mb4_0900_ai_ci (default) latin1
Operational Overhead

Operations Take Time, Cost Money, Cause Overhead

10TB Database Backup?

Adding The Index to Large Table?
Distributed Systems

10x+ More Complicated

Better High Availability

Many Failure Scenarios

Test how application performs
Risks of Automation

Automation is Must

Mistakes can destroy database at scale
Security

Database is where the most sensitive data tends to live

Shared Devs and Ops Responsibility
What Else

What Would you Add?
Thank You!
Twitter: @percona @peterzaitsev