MySQL Replication vs Galera: which is better for

Nickole

xx

- &
/V ‘ 3 i‘—.;s x5
N’ y |

o



Replication is better than standalone

 Standalone

* Less parts leading to less - -
faults j!\ ) u

* New transactions e
reading committed data
instantly

* You know where to find
, d database (L) HighLoad ™



Replication is better than standalone

Replication

. Database service is alive on
multiple node faults

. Easytoincrease READ
performance by adding
servers

. Proxy servers distribution the
load

3 (L) HighLoad ™



Statement (SQL) replication

* Non-deterministic queries crashing replication
- UUID(), RAND()

- DELETE/U
* READ COMM

PDA

TTE

'E + LIMIT 6e3 ORDER BY

D / READ UNCOMMITTED



ROW based replication
* How to find a row? C ) L

- Primary Key! “

 What to transfer? ] o
‘ IN ES (56) ‘ \/v
- row before
- row after o
| INSERT ROW (55) |
- pa rtial rOW | INSERT ROW (56) |

> (L) HighLoad ™



Replication files

* binary log
* relay log
* master.info relay-log.info

- could be stored inside InnoDB tables



Replication: faults

* semi-sync
- Does the slave receive replication event?
- COMMIT waits for the confirmation from at least single slave
rpl_semi_sync_master_wait_for_slave count
e crash-safe slave (default 8.0)
- relay-log-info-repository=TABLE
- relay-log-recovery=0ON

7 (L) HighLoad ™



Replication: group commit

* InnoDB => MySQL: Transaction is ready!
- PREPARE

- multiple transactions committed in parallel
* MySQL => InnoDB: binlog fsync finished
* binlog group commit_sync_delay
* binlog_group_commit_sync_no_delay_count

8 (L) HighLoad ™



Replication: GTID

* binlog file name and position is different everywhere
e server“s UUID + segno(transaction on server)

* Snapshot identified by: (uuid1l:seql, uuid2:seqg2...)
- long sets...

 CREATE SELECT — problem

* tmp tables in transactions — also not supported

(L) HighLoad ™



Replication: WRITESET

* Replication event:
- db.table.PK

- row
* For each row calculate XXHASH64(PK)
* Foreign keys are not supported

10



Parallel slave

* slave_parallel _type
- DATABASE
- LOGICAL_CLOCK

* binlog transaction dependency tracking
- COMMIT_ORDER
- WRITESET, WRITESET_SESSION

11



1t“s almost a multi-master!

* Synchronous multi-master is a reliable
solution

- transaction write conflict? ROLLBACK

- error applying the row?
. recreate the node

12



Group Replication

* New network protocol

- eXtended COMmunication
* cluster members state monitoring
* single-primary, multi-primary

- primary role switchover

13

(L) HighLoad ™



Group Replication: XCom

14

Based on Paxos (Mencius)

Strict transaction commit order in cluster
Dynamic membership

Fault detection



Paxos

CLIENT PROPOSER

1) Elect the leader

2) Transfer the
transaction

3) Majority accepts the
transaction

4) COMMIT!

15

ACCEPTOR

4

»
>

AAA

Y

Y

LEARNER

AAA

AL+

REQUEST
PREPARE(5)

PROMISE(5,Va, Vb, Vc)

ACCEPT! (1.V)

ACCEPTED (1,V)

RESPONSE

(L) HighLoad ™



Multi-Paxos

CLIENT PROPOSER

>

* Elect the leader only
once

ACCEPTOR

\ 4

e Skip elections

Y

LEARNER

I AAA

(prepare )

1\4
|
|

* Leader proxies
messages

16

REQUEST

ACCEPT! (1.V)

ACCEPTED (1,V)

RESPONSE

(L) HighLoad ™



Mencius

* Every node has a
leader slot

* nhothing to suggest?
- send a SKIP

17

o
O
O

' SLOT1




XCom: optimizations

* handles empty slots
* batch processing for multiple transactions
 full transaction data transfered just once

18



XCom: restrictions

* up to 9 nodes

* long message processing? Node evicted from
cluster

- group_replication_member_expel_timeout =5 seconds
- group_replication_transaction_size_limit = 143MB

- group_replication_communication_max_message_size = 10MB

19 @ HighLoad™



Group Repl.: Single Primary

* Better than async replication!
- automatic recovery after fault

- guarantees the same row values on all
nodes

20

(L) HighLoad ™



Group Repl.: Multi Primary

21

Advanced moc
no Gap Locks,

S
READ COMMITTED

no SERIALIZAB
DDL — problem
FK — problem

E



Group Repl.: consistency

e group_replication_consistency
- EVENTUAL — do not wait
- BEFORE_ON_PRIMARY_FAILOVER
- BEFORE — wait for previous transactions to commit
- AFTER — wait for transaction to be applied everywhere

- BEFORE_AND_AFTER

22

(L) HighLoad ™



Group

Repl.: instrumentation

e Performance Schema tables

- rep
- rep
- rep

- rep

23

ication_group_member_stats
ication_group_members
ication_connection_status

ication _applier status



Repair: incremental

. Do you have a server with older GTID?

. Do you have old binary logs?

. Applies the difference between old state and
current cluster state incrementally

24 @ HighLoad™



Repair: manual

. mysqldump
- too slow for real databases
- mysqlpump — better

. Xtrabackup

- same as GTID-replication setup

. MySQL Enterprise Backup

- not open source, subscription required () HighLoad”



CLONE Plugin

. Similar to MEB/Xtrabackup
. FILE COPY

. PAGE COPY

. REDO COPY

26



InnoDB Cluster: MySQL Router

* proxy MySQL network protocol

* Monitors cluster membership

* Run it directly on application server
* Different TCP ports for RW and RO

27



InnoDB Cluster: MySQL Shell

e X Dev API

* Admin API

* Shell API

e SQL

* Python & JavaScript library

28



InnoDB Cluster: MySQL Shell

* Checks server configuration

* fixes the configuration with mysgl-auto.cnf
* Creates the cluster

* Can add new nodes with CLONE

* cluster.status()

29



Summary: InnoDB Cluster

e Over 3 years after release, many changes
implemented during last year

* Use with MySQL 8.0.17+ |

* There is no WAN optimizations

* Good encryption for network and storage
* NoSQL by using X protocol

30



Percona XtraDB Cluster

* Synchronous replication

* Since 2012 (5.5)

* Galera-based

* Current development focus:

- autonomous usage (reduce ops)

- fix bugs

31



Galera

* Full database on each node

* Slow as a slowest node

e Virtually synchronous

* Error for each query after loosing quorum on the node
* COMMIT = can return error

e COMMIT —at least RTT long

* Problematic with large transactions (improved with Galera 4/PXC8)

32

(L) HighLoad ™



Galera: Binlog

33

oinary logs are not used directly
ninlog could be disabled

Uses hooks in InnoDB code

ROW events saved in Gcache
write-set: all rows modified by transactions



Galera: DML processing

BEGIN;
* queries...

COMMIT:

- Extract write-set

- Get a Transaction ID
- write-set transfer

- wait for certification

- return OK to the client

34 @ HighLoad™



Galera: consensus, trx id

* Totem single-ring ordering and membership
* Every node certifies all transactions
* seqno incremented globally in the cluster

35 @ HighLoad™



Galera: * segno

* global seqno (x,y,z)
* local_segno nl(a,b,c) n2(a,p,r) n3(m, n, o)

* [ast_seen_seqgno

- for the trx under certification

- helps to detect certification boundaries
* depends_seqno



Galera: Flow Control

* Async write-set copy

* Async apply

- global transaction ordering
* Receive queue

- Flow Control (PXC: 100+ transactions)

37



Galera: readings after DML

* Virtually synchronous

e wsrep_sync_wait — SELECT waits until proper
seqno on all nodes

e Galera4/PXC8: functions for wait

Stransaction_gtid = SELECT WSREP_LAST SEEN_GTID();
SELECT WSREP_SYNC_WAIT_UPTO_GTID(Stransaction_gtid);

38 @ HighLoad™



PXC: ProxySQL

* Intelligent load balancer
* Implements MySQL network protocol

e Can balance:

- gueries
- transactions

- users
2 SELECT / INSERT+UPDATE+DELETE separation () HighLoad”



ProxySQL: setup

* Clustering: multiple ProxySQL servers

- Automatic sync for settings and state
- not a single point of failure

- you can run it on application server directly
« Uses mysql network protocol for configuration MySQL, TCP/6032.

40 @ HighLoad™



ProxySQL: setup

« Stores details for all nodes at mysql_servers
* checks node availability

* Multiple server roles (reader,writer, backup writer) in
mysql_galera_hostgroups

41

(L) HighLoad ™



ProxySQL: users

42

ProxySQL stores all users in mysql_users

MySQL should have same users and passwords

- add users on one PXC node
- setup access rights (GRANT/REVOKE) in MySQL

proxysql-admin --config-file=/etc/proxysql-admin.cnf --syncusers

(L) HighLoad ™



ProxySQL: routing

* mysql_query_rules:

- SELECT: processed by «readers»
- SELECT ... FOR UPDATE: processed by «writer»

- other queries: processed by writer to reduce conflicts
* Query routing:

- RegEx

- by user name (prod_ro, prod_rw)

43

(L) HighLoad ™



PXC: WAN

* Voting weights to calculate quorum
» Arbiter
« Multiple settings for different timeouts

« Segments: reduce WAN traffic’

44

(L) HighLoad ™



PXC: DDL

45

Total Order Isolation

- block all queries on all nodes
- wait for ALTER TABLE applied in parallel everywhere

- pt-online-schema-change helps a lot
Rolling Schema Upgrade
- apply node by node

- hard to use

(L) HighLoad ™



PXC: Recovery

« SST: Full backup and restore

- Xxtrabackup
- rsync (disabled in PXC8 due to REDO logging changes)
- mysqldump (deprecated, removed from PXC8)

* |IST:. incremental

- node gets the difference from donor“s Gcache

46

(L) HighLoad ™



PXC: version upgrades

47

Major version:

Stop whole cluster

update OS packages

start without galera: --wsrep-provider='none'
mysql_upgrade

repair other nodes by SST

(L) HighLoad ™



PXC: version upgrades

e Minor:

stop the node

- upgrade OS packages

- start without galera: --wsrep-provider='none’
- mysql upgrade

- repeat operation on other nodes

48

(L) HighLoad ™



PXC8: version upgrades

* Major and minor:

- JOINER can connect to older cluster

- After SST. mysql_upgrade stats automatically

* |Isa DONOR an async slave?
- RESET SLAVE ALL executed automatically

49

(L) HighLoad ™



PXC: instrumentation

» Performance Schema

- wait & stage instruments
- mutex/cond variables
- files
- threads
« SHOW STATUS
- Used by Percona Monitoring and Management

- PXCS8: wsrep_monitor_status
50

(L) HighLoad ™



Galera4/PXC8: instrumentation

* mysql.wsrep_cluster
 mysql.wsrep_cluster members

* mysql.wsrep_streaming_log

51

(L) HighLoad ™



PXC8: big transactions

. Galera 4 feature

. Streaming Replication
- splits transaction in parts

- after first part certification

conflicting transactions are rolled back
use READ COMMITTED!

52

(L) HighLoad ™



PXC8: Streaming replication

. [00 many rows:
- fragment replicated before the COMMIT

. Hot rows
- Use manual SR to get high priority lock:

— START TRANSACTION;
SET SESSION wsrep_trx_fragment_unit='statements’;
SET SESSION wsrep trx_fragment_size=1;

53 @ HighLoad™



How to evaluate replication?

. Kubernetes
- Percona K8S Operator for PXC
- MySQL Operator

. dbdeployer

54



dbdeployer

Linux or OS X
S VERSION=1.42.0
S OS=linux
S origin=https://github.com/datacharmer/\
dbdeployer/releases/download/vSVERSION
S wget Sorigin/dbdeployer-SVERSION.SOS.tar.gz
S tar -xzf dbdeployer-SVERSION.SOS.tar.gz
S chmod +x dbdeployer-SVERSION.SOS
S sudo mv dbdeployer-SVERSION.SOS /usr/local/bin/dbdeployer
S dbdeployer downloads list

55

(L) HighLoad ™



dbdeployer: download

get a tar.{gz,xz} from the official site

Check libraries with: Idd bin/mysqld
S dbdeployer downloads list
S dbdeployer downloads get \
mysql-8.0.18-linux-glibc2.12-x86 64 .tar.xz
S dbdeployer unpack \
mysql-8.0.18-linux-glibc2.12-x86_64.tar.xz

56

(L) HighLoad ™



Innodb Cluster

. Locally

. Uses different TCP ports
dbdeployer deploy --topology=group \
replication 8.0.18 --single-primary

57



PXC

. PXC8 currently a bit more complex
dbdeployer deploy --topology=pxc \
replication pxc5.7.27

58



Summary

59

Automatic recovery
Load balancer
Multi-Master
APIl/cmd for control
WAN

Big transactions
“mature”

Supported by Percona

PXC

+

ProxySQL

+

8.0

InnoDB Cluster
8.0.17

MySQL Router
default: single

mysqlshell

@ HighLoad ™



Questions?

o?
¢ ?

* nickolay.ihalainen@percona.com

60

(L) HighLoad ™



