MongoDB 4.0 Features
- Transactions & More

Alexander Rubin
Principal Architect

Ny

About me

My name is Alexander Rubin
« Working with MySQL for over 12 years

— Started at MySQL AB, then Sun Microsystems,
— then Oracle (MySQL Consulting)

— Joined Percona 5 years ago

» \Working with MongoDB for 3 years

MongoDB 4.0 new features

= Will only focus on MongoDB 4.0 server features
* will not talk about cloud offering

= Biggest feature is transactions!

= Other server features include:
* Non blocking reads
* Improved Sharding
* and more

3 © 2018 Percona

MongoDB 4.0 Transactions

MongoDB transaction explained

= Usually transactions are explained with bank transaction
° ... Financial applications are less common with MongoDB

* ... but gaming / and mobile application are!

5 © 2018 Percona OPERCONA

Pokemon Go: a case for transactions

7~
(2] sloth806 Lv. 19 e
et von® &

A Complex Exchange Transaction:
e - = Remove pokemon from player a

HP 84 -89

9 SonFrancisco Cotforn = Add that pokemon to player b
= Remove “payment” (stardust item) fromaand b
= Add “bonus” (pokemon candy) toaand b

= (internal) may need to record transaction info:
* date and time
* etc

C 361-404
HP 47 - 53

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pokémon

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pok%C3%A9mon

Pokemon Go: a case for transactions

7~
(2] sloth806 Lv. 19 9
- o . . -

Before transactions: MongoDB 3.x
e - =There are tons of ways to simulate transactions

HP 84 -89

9 SonFrancico Catfors ® = Common approach: simulate redo log:

WA * Use exchange_transaction_log collection
* Add everything that is happening inside transaction
* Eventually (async or sync) make the actual changes
* Catch any exceptions / cleanup on error

C 361-404
HP 47 - 53

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pokémon

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pok%C3%A9mon

Pokemon Go: MongoDB 4.0
oo &)

9
| !
\\‘ > /'

Marill

C 161-215
HP 84 -89

9 San Francisco, California

WAITING

Vulpix
C 361-404 A
HP 47-53

9 San Francisco, California,

// this

session

session.
.getDatabase("p").player items.update(

session

session

session

session.

is basic design of what Pokemon exchange can look like

= db.getMongo().startSession()
startTransaction()

{player_id : 123}, { $inc: { stardust: -1 } });

.getDatabase("p").player items.update(

{player_id : 321}, { $inc: { stardust: -1 } });

.getDatabase("p").player pokemons.update(

{player _id : 321},
$push: {pokemon_id: 987});

commitTransaction()

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pokémon

https://support.pokemongo.nianticlabs.com/hc/en-us/articles/360001518407-Trading-Pok%C3%A9mon

Transactions In MongoDB 4.0

session = db.getMongo().startSession()

® Sessionis a concept introduced in MongoDB 3.6.

e Session is a "context"
© mainly used for multi-document transactions.

e Session have Isid, txnNumber, stmtlds that identifies session, transaction and
operation (does not need to be set)

9 © 2018 Percona OPERCONA

Current transaction implementation (4.0)

10

Requires WiredTiger

In MongoDB < 4.0, an operation on a single document is atomic, but not on multiple

documents (or multiple collections)

Starting with 4.0, MongoDB provides the ability to perform multi-document

transactions against replica sets

When a transaction commits, all data changes made in the transaction are saved.

If any operation in the transaction fails, the transaction aborts

o all data changes made in the transaction are discarded without ever becoming
visible.

Until a transaction commits, no write operations in the transaction are visible outside

the transaction (the transaction is still in memory).

o |If there is no commit the transaction will be aborted (not rolled back)

© 2018 Percona OPERCONA

Transactions: ACID

Atomicity

e "all or nothing" guarantee for multi-document transaction operations
e Data changes are only made visible outside the transaction if it is successful.
e |f a transaction fails, all of the data changes from the transaction is discarded.

11 © 2018 Percona OPERCONA

Transactions: ACID

Consistency

e Handled by MongoDB
O example: trying to change a value that fails schema validation, will cause
inconsistent data
o (permitted transactions should not corrupt data)

12 © 2018 Percona OPERCONA

Transactions: ACID

Isolation

e Snapshot isolation level
O ... creates a WiredTiger snapshot at the beginning of the transaction
O ... uses this snapshot to provide transactional reads throughout the transaction.

13 © 2018 Percona OPERCONA

Transactions: ACID

Durability

e When a transactions use WriteConcern {j: true} (default), MongoDB will guarantee

that it is returned after the transaction log is committed.

Even if a crash occurs, MongoDB can recover according to the transaction log.
If the {j: true} level is not specified, even after the transaction is successfully
committed, the transaction may be rolled back (in case of crash recovery,)

14

© 2018 Percona OPERCONA

Transactions and ReplicaSet

Transaction and Replica

e Inthe replica set configuration, an oplog will be recorded on commit
o ... including all the operations in the transaction.
e The slave node pulls the oplog and replays the transaction operations locally

(the document size limit is 16 MB, so whole transaction can not exceed 16 MB)

15 © 2018 Percona OPERCONA

Transaction and WiredTiger

Unified Transaction Timing

e WiredTiger has supported transactions for a long time
o (guarantee the modification atomicity of data, index, and oplog)
e The problem was with timing:
© MongoDB used the oplog timestamps to identify the global order
o WiredTiger used the internal transaction IDs to identify the global order
e MongoDB version 4.0 / WiredTiger 3.0 introduced transaction timestamps
© MongoDB can now explicitly assign a commit timestamp to the WiredTiger
transaction (read "as of" a timestamp)
o When the oplog is replayed, the read on the slave node will no longer conflict with
the replayed oplog, and the read request will not be blocked by replaying the

oplog.

16 © 2018 Percona OPERCONA

Marathon to transactions: the homestretch

MongoDB 3.0 MongoDB 3.2 MongoDB 3.4 MongoDB 3.6 MongoDB 4.0 MongoDB 4.2
Single Replica Set Sharded
Transactions Transactions

Enhanced replication Shard membership Consistent secondary Storage support for Transaction - compatible

protocol: stricter = : G biataia :
consistency & durability awareness reads in sharded clusters prepared transactions chunk migration

WiredTiger default storage Loaical sessions Make catalog More extensive
engine o9 timestamp-aware Wired Tiger repair

New Storage engine
(WiredTiger)

Config server :
9 Replica set

manageability Retryable writes point-in-time reads Transaction manager

improvements

Read concern "majority™ Causal Consistency Recc,j{;??g;[(g':;{ik - Global point-in-time reads
Cluster-wide logical clock Recover to a timestamp Oplog applier prepare
support for transactions

Storage API to changes to Sharded catalog
. Done use timestamps improvements
Collection catalog
versioning
. In Progress
Make collection

drops two phrase

. Sharded Transaction Feature UUIDs in sharding

Fast in-place updates to

large documents in WT

17 From MongoDB World 2018: Keynote, https://www.slideshare.net/mongodb/mongodb-world-2018-keynote @ PERCONA

https://www.slideshare.net/mongodb/mongodb-world-2018-keynote

Transaction isolation level in MongoDB 4.0

Snapshot Isolation

e MongoDB 4.0 implements snapshot isolation for the transactions

e The pending uncommitted changes are only visible inside the session context
o (the session which has started the transaction)
O are not visible outside.

18 © 2018 Percona OPERCONA

Snapshot Isolation: Example

® Connection 1:

f00:PRIMARY> session = db.getMongo().startSession()
session { "id" : UUID("bdd82af7-ab9d-4cd3-9238-f08ee928f31le") }
f00:PRIMARY> session.startTransaction()

f00:PRIMARY> session.getDatabase("percona").test.insert({today :

WriteResult({ "nInserted"” : 1 })

e Connection 2:
f00:PRIMARY> session = db.getMongo().startSession()
session { "id" : UUID("eb628bfd-425e-450c-a51b-733435474eaa") }
f00:PRIMARY> session.startTransaction()
f00:PRIMARY> session.getDatabase("percona").test.find()
// nothing

19 © 2018 Percona

new Date()})

Snapshot Isolation: Example

® (Connection 1: commit

20

f00:PRIMARY> session.commitTransaction()

Connection 2: inside of the original session

f00:PRIMARY> session.getDatabase("percona").test.find()
f00:PRIMARY> // nothing

Connection 2: outside of the session

f00:PRIMARY> db.test.find()

{ "_id" : ObjectId("5b21361252bbe6e5b9a70a4e"), "today" :
ISODate("2018-06-13T15:19:46.645Z") }

{ "_id" : ObjectId("5b21361252bbe6e5b9a70a4f"), "some_value"

© 2018 Percona

: Ilabcll }

MongoDB transactions: conflict

How does MongoDB handles conflicts:

e Let’s say we are updating the same row. First we create a record, trx, in the collection:
use percona
db.test.insert({trx : 0})

e Then we create sessionl and update trx to change from © to 1:

f00:PRIMARY> session = db.getMongo().startSession()

session { "id" : UUID("©b7b8ce0-919a-401la-af01-69fe90876301") }

f00:PRIMARY> session.startTransaction()

f00:PRIMARY> session.getDatabase("percona").test.update({trx : 0}, {trx: 1})
WriteResult({ "nMatched" : 1, "nUpserted" : @, "nModified" : 1 })

21 © 2018 Percona 0 PERCONA

MongoDB transactions: conflict

e Then (before committing) create another session which will try to change from 0 to 2:

f00:PRIMARY> session = db.getMongo().startSession()
session { "id" : UUID("b312c662-247c-47c5-b0c9-23d77f4e9f6d") }
f00:PRIMARY> session.startTransaction()
f00:PRIMARY> session.getDatabase("percona").test.update({trx : 0}, {trx: 2})
WriteCommandError({
"errorLabels" : [
"TransientTransactionError"

1,
"operationTime" : Timestamp(1529675754, 1),

MongoDB catches the
conflict and return the

"ok" : 9, error on the insert
"errmsg" : "WriteConflict", (even before the commit)
"code" : 112,
"codeName" : "WriteConflict",
"$clusterTime" : {
"clusterTime" : Timestamp (1529675754, 1),
"signature" : {
"hash" : BinData(@, "AAAAAAAAAAAAAAAAAAAAAAAAAAA="),
"keyId" : NumberLong(@)
}
}

22 }) © 2018 Percona 0 P E R C 0 N A

Write Concern and Transactions

MongoDB is a distributed database- be aware of the different options for
consistency.

Write concern describes the level of acknowledgement requested from MongoDB
for write operations

e For multi-document transactions, you set the write concern at the transaction level,
not at the individual operation level.

Session.startTransaction({ writeConcern: { w: <level>} })
// w: 1, majority

If you commit using "w: 1" write concern, your transaction can be rolled back during the
failover process.

23 © 2018 Percona OPERCONA

Read Concern and Transactions

The readConcern option allows you to control the consistency and isolation
properties of the data read from replica sets and replica set shards.

e For multi-document transactions, you set the read concern at the transaction level,

not at the individual operation level.
e If unspecified at the transaction start, transactions use the session-level read concern

or, if that is unset, the client-level read concern.

Session.startTransaction({ readConcern: { level: <level>} })

© 2018 Percona OPERCONA

24

Read Concern “Snapshot” and Transactions

e Read concern "snapshot" is only available for multi-document transactions.
e Multi-document transactions support read concern "snapshot" as well as "local", and
"majority".

Session.startTransaction({ readConcern: { level: "snapshot"} })

25 © 2018 Percona OPERCONA

MongoDB 4.0: Other features and
improvements

Not only transactions

MongoDB 4.0: Not only transactions

Non-Blocking Secondary Reads

e MongoDB previously blocked secondary reads while oplog entries were applied.
o when the replication threads were writing to the database the readers must wait
e MongoDB 4.0 adds the ability to read from secondaries while replication is
simultaneously processing writes.

27 © 2018 Percona OPERCONA

MongoDB 4.0: Not only transactions

Extensions to Change Streams

e Change streams introduced in version 3.6 helps applications to access real-time data
changes (similar to tail the collection but better as it is replication aware).

e |n 4.0 Change Streams can be configured to track changes across an entire database
or whole cluster. Also, it will return a cluster time associated with an event (to provide
an associated wall clock time for the event)

28 © 2018 Percona OPERCONA

MongoDB 4.0: Not only transactions

Data Type Conversions

e A new expression Sconvert has been added to the aggregation framework
https://docs.mongodb.com/manual/reference/operator/aggregation/convert/

o Helps for ETL workloads
o Also allow the MongoDB Bl Connector to push down work to MongoDB Server
(and avoid sending data over the wire)

29 © 2018 Percona OPERCONA

https://docs.mongodb.com/manual/reference/operator/aggregation/convert/

MongoDB 4.0: Not only transactions

SHA-2 Authentication

e With MongoDB 4.0, authentication has been updated to the latest SHA-2 family
(SHA-256), providing a stronger alternative to SHA-1

30 © 2018 Percona OPERCONA

MongoDB 4.0: Not only transactions

Improved Sharding

e Sharded migrations are now up to 40% faster helping for better distribution of the
data.

e Operators can now list and kill queries running in a sharded cluster directly on a
mongos node.

e Slow Query Logging on mongos: ability to enable profile on mongos

31 © 2018 Percona OPERCONA

Percona Server for MongoDB

32

PERCONA

Server for MongoDB

Free and open source

22222222222

pre—
v —
v —

o_
— —— -
R - | Database 0
_\/ Auditing
LDAP Authentica

tion
Percona Memory

N

vw I . .‘
.Tm mongo E'Q
Log Redaction COMMUNITY EDITION Hot
Backup

_ /

Links

MongoDB Transaction Documentation
MongoDB 4.0 and Transactions: interviews with MongoDB engineers
MongoDB Transactions: Your Very First Transaction with MongoDB 4.0

MongoDB Server 4.0: What’s New
MongoDB World 2018 keynote

33 © 2018 Percona

https://docs.mongodb.com/manual/core/transactions/
https://www.mongodb.com/transactions
https://www.percona.com/blog/2018/06/25/mongodb-transactions-your-very-first-transaction-with-mongodb-4-0/
https://webassets.mongodb.com/mongodb_whats_new_4.0.pdf
https://www.slideshare.net/mongodb/mongodb-world-2018-keynote

e, PERCONA
0) LivE europe

Full Agenda is Live!

Percona Live Europe
Connect. Accelerate. Innovate.

Join the open source community in Frankfurt, Germany,
to learn about core topics in MySQL, MongoDB,
PostgreSQL and other open source databases.

Reserve Your Seat

Frankfurt 5-7 November 2018

\ Buy Your Tickets

https://www.percona.com/live/e18/

Thank you!

35

Alexander Rubin

©©©©©©©©©©©©

Champions OF Unbiased
Open Source Database Solutions

0,

