

Percona Technical Webinars August 1, 2018

Migrating to Aurora MySQL
and

Monitoring with PMM

 Introductions

3

Introduction

Vineet Khanna (Autodesk)
Senior Database Engineer

vineet.khanna@autodesk.com

Tate McDaniel (Percona)
Senior MySQL DBA

tate.mcdaniel@percona.com

mailto:vineet.khanna@autodesk.com
mailto:tate.mcdaniel@percona.com

 This talk’s agenda

5

Agenda

What is this talk about?

● A real life migration from EC2 backed MySQL instances to managed Aurora clusters
○ How do I determine if Aurora is the correct solution for my application?
○ What does the decision making process look like?
○ What does a POC look like?

● Implementing code reusable version and infrastructure tracking
○ Adapting Terraform to AWS Aurora
○ Open source development of tools for devops - code reusable
○ Auditing changes to the database infrastructure.

● Monitoring and evaluating the effectiveness of a major infrastructure change
○ Using PMM and other tools to monitor the new environment
○ Comparison of old and new environments
○ Justification of the infrastructure shift

In this talk:
Aurora = AWS Aurora MySQL 5.6

 AWS Aurora - What?

8

AWS Aurora MySQL Architecture

 AWS Aurora - Why?

10

Why Aurora? Pros...

General benefits of AWS Aurora MySQL:

● Replication Lag less than 100 ms within same region
● 6 copies of your data across 3 Availability Zones
● Scale storage size automatically to 64 TB
● Supports up to 15 Replicas
● Isolates the database buffer cache from database processes
● Does not require crash recovery replay of database redo logs
● Multi-AZ is built-in and automatic
● Continuous backup to S3
● Allows storage encryption
● Zero Downtime Patching available without binlog
● Fast Database Cloning
● Auto Scaling - Read Replica

11

Why Aurora? Cons...

General downsides of AWS Aurora MySQL:

● Cross-region replica based on binlog
● Table level corruption suffers across the cluster
● Point in Time Recovery not possible

○ However AWS provides Point in Time Restore
● Delayed slave not possible to survive drop table disaster
● No change buffering
● Stick to MySQL version 5.6.10 & 5.7.12
● Performance Schema disabled for Aurora MySQL 5.7
● External Plugins not supported
● Supports only InnoDB storage engine
● Closed Source

12

MySQL RDS vs Aurora Performance Test

Machines:

● Client Machine: Instance Type: m4.4xlarge (CPU 16, Mem. 60G)
● Database Machine: Instance Class: db.r3.8xlarge (CPU 32, Mem. 244G)

○ Master & Read Replica

Benchmarking Tool:

● Sysbench 1.0
○ Tables: 10 tables x 250 million rows (around 50G each table)

Benchmark Test:

● OLTP RW/RO
● Failover Test
● Latency(Slave Lag) Test

Test Duration:

● 60 min each test (OLTP)

13

MySQL RDS vs Aurora Failover Test

●

14

MySQL RDS vs Aurora OLTP RW Test

●

15

MySQL RDS vs Aurora OLTP RO Test

●

16

MySQL RDS Latency Test

17

18

MySQL Aurora Latency Test

19

 The Future of Aurora

21

The Future of Aurora

Upcoming features to be rolled out in Q2 or beyond:

● Multi Master Multi Region AWS Aurora
● AWS Serverless Aurora
● Parallel Query
● Database backtrack

 Verify Schema/Data Consistency

23

Verify Schema Consistency

Why we need to verify Schema Consistency

● Functions are not imported automatically
● Stored procedures are not imported automatically.
● User accounts are not imported automatically.
● Views with definer root@localhost are not accessible

Tools & Commands

● MySQL Utilities: mysqldiff

mysqldiff --difftype=sql --changes-for=server2 --server1=$USER:$PASS@$EC2IP
--server2=$USER:$PASS@$AURORAIP $DBNAME:$DBNAME

● MySQL Utilities: mysqldbcompare

mysqldbcompare --difftype=sql --server1=$USER:$PASS@$EC2IP
--server2=$USER:$PASS@$AURORAIP $DBNAME:$DBNAME --changes-for=server2

24

Verify Data Consistency

Verify Data Consistency Using pt-table-checksum

● If you are running MySQL on STATEMENT binlog format
● Run pt-table-checksum directly from EC2 based MySQL Master
● pt-table-checksum

pt-table-checksum --recursion-method dsn=h=localhost,D=percona,t=dsns
--nocheck-replication-filters --ignore-databases
mysql,performance_schema,information_schema > checksum.log 2>&1

● pt-table-sync

pt-table-sync --replicate percona.checksums --sync-to-master
192.168.1.245 --user restore --pass 'PASSWORD' --print --verbose

Verify Data Consistency Using Paused Slave

● Create Aurora Cluster as a Slave of Slave
● Pause Slave and checksum table

 Aurora Migration

1:1 Migration
From EC2 MySQL to Aurora

27

1:1 Migration: EC2 MySQL to Aurora

BACKUP

S3 UPLOAD

RESTORE AURORA

SP, Functions,Users

SETUP AURORA REPLICA

CONSISTENCY CHECK

28

1:1 Migration: EC2 MySQL to Aurora

29

1:1 Migration: EC2 MySQL to Aurora

30

1:1 Migration: EC2 MySQL to Aurora

31

1:1 Migration: EC2 MySQL to Aurora

32

1:1 Migration: EC2 MySQL to Aurora

Migrating EC2 Based MySQL to Aurora MySQL:

1. Create Backup using Percona XtraBackup
2. Upload to S3 bucket
3. Restore Aurora Cluster using S3 backup
4. Manually create Stored Procedure, Functions & Localhost Users
5. Make Aurora as a replica of EC2 based MySQL
6. Wait until the replication catch-up
7. Run Schema & Data Consistency checks
8. Update ODBC/JDBC connection string to point Aurora
9. Enable Read Only on EC2 based MySQL Master

10. Capture Aurora binlog position
11. Reload Config/Restart Web Servers (Ideally this should take less 1 min to avoid any

downtime)
12. Setup Reverse Replication for Failback

Many:1 Migration
From EC2 MySQL to Aurora Using MSR

34

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

BACKUP

S3 UPLOAD

RESTORE AURORA

SP, Functions,Users

SETUP AURORA REPLICA

CONSISTENCY CHECK

CREATE MSR REPLICA

35

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

36

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

37

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

38

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

Migrating & Consolidate EC2 Based MySQL to Aurora Using Multi Source Replication:

1. Create Backups of All MySQL Servers using mysqldump
2. Create EC2 instance with Percona 5.7 to use Multi Source Replication Feature
3. Dump data from multiple sources to newly created EC2 instance & configure replication
4. Create Backup using Percona XtraBackup
5. Upload to S3 bucket
6. Restore Aurora Cluster using S3 backup
7. Manually create Stored Procedure, Functions & Localhost Users
8. Make Aurora as a replica of EC2 based MySQL
9. Wait until the replication catch-up

10. Run Schema & Data Consistency checks

39

Many:1 Migration: EC2 MySQL to Aurora
 Using MSR

Migrating & Consolidate EC2 Based MySQL to Aurora Using Multi Source Replication:

11 Update ODBC/JDBC connection string to point Aurora
12 Enable Read Only on MySQL Masters
13 Capture Aurora binlog position
14 Reload Config/Restart Web Servers (Ideally this should take less 1 min to avoid any

downtime)
15 Setup Reverse Replication for Failback

Many:1 Migration
From EC2 MySQL to Aurora Using DMS

41

Many:1 Migration: EC2 MySQL to Aurora
Using AWS DMS

NEW AURORA CLUSTER

SCHEMA DUMP

DMS SETUP

START DATA LOAD

WAIT TILL DATA LOAD

CONSISTENCY CHECK

42

Many:1 Migration: EC2 MySQL to Aurora
Using AWS DMS

43

Many:1 Migration: EC2 MySQL to Aurora
Using AWS DMS

44

Many:1 Migration: EC2 MySQL to Aurora
Using AWS DMS

45

Many:1 Migration: EC2 MySQL to Aurora
Using AWS DMS

Migrating & Consolidate EC2 Based MySQL to Aurora Using DMS:

1. Create Empty AWS Aurora Cluster
2. Take dump of Schema, Stored Procedure, Functions & Users and Transfer manually to

Aurora
3. Create AWS DMS for each MySQL source to target Aurora Cluster

a. AWS DMS will take care of initial load and ongoing replication changes
4. Wait until the initial load complete and replication catch-up
5. Run Schema & Data Consistency checks

a. Can’t utilize pt-table-checksum/sync
6. Update ODBC/JDBC connection string to point Aurora
7. Enable Read Only on MySQL Masters
8. Capture Aurora binlog position
9. Reload Config/Restart Web Servers (Ideally this should take less 1 min to avoid any

downtime)
10. Setup Reverse Replication for Failback

46

MSR vs DMS Migration Comparison

●

Comparison Points MSR DMS

Schema Migration Automatic (S3 restore) Manual

Replication from Master Yes No

Data Consistency Check Yes Yes with limitations

Online DCC Yes No

Performance (Full LOB) Doesn’t Matter Very Slow

Seconds Behind Master Yes CDCLatencySource/Target

Setup Complex Simple

Binlog Format All ROW

 PMM dashboards

48

MySQL Connections

EC2 on left, Aurora on right
Consistent number of connections
Neither technology is pushed anywhere near the limit

49

MySQL Client Thread Activity

The most interesting metric is threads running
In both cases this metric is low and in both cases the threads connected are similar

50

InnoDB Deadlocks

Deadlocking is symptom of poor management of concurrency
Both technologies have a low number of deadlocks

51

InnoDB Row Lock Time

Row contention metric
Aurora has a slightly avg row lock time
Pattern is consistent

52

InnoDB Transactions

InnoDB transactions give us a glimpse into average and peak loads
Both technologies achieved similar peak loads

53

MySQL Questions

Questions are similar to transactions but represent actual activity in innodb at any given time
Consistent peaks and valleys indicate a similar performance profile

 Build Aurora Infra

55

Using Terraform

Why Terraform:

● Infrastructure as Code
● Open Source
● Supports multiple Cloud providers
● Reusable code (Dev → Stage → Prod)

Problem we faced during Terraform Implementation:

● Terraform doesn’t support Aurora Restore using S3

Our Implementation:

● Still we want to have Infrastructure as Code
● Terraform supports instance creation separately
● We wrote our own python code to launch Aurora Cluster
● We used XtraBackup to restore Aurora Cluster

56

Terraform AWS Aurora MySQL Modules

https://github.com/sanjeet-deshpande/tf-aws-aurora

https://github.com/sanjeet-deshpande/tf-aws-aurora

57

Restore Using Percona XtraBackup

Advantages:

● Physical migration is faster than logical migration

● No impact on Database performance when a backup is taken for physical migration.

● Physical migration including complex database components

Limitations:

● Source and destination databases must be MySQL 5.6.

● You can’t restore into an existing Aurora instance using this method.

● User accounts, functions, and stored procedures are not imported automatically.

● Partial migration of Source Database is not supported

 Final Thoughts

59

Contributions to this talk:

Sanjeet Deshpande (Autodesk)

Sanjeet is a Senior DevOps having 10+ years of experience
and currently working with Autodesk, Singapore.
experienced in architecting, deploying and managing the
cloud infrastructures/applications and automation
experience. he has worked extensively on AWS services like
Lambda,SQS, RDS, SNS to name a few. Worked closely with
engineering team of different application to suggest changes
to improve uptime of the application.

Alkin Tezuysal (Percona)

Alkin has extensive experience in enterprise relational
databases working in various sectors for large corporations.
With more than 20 years of industry experience he has
acquired skills for managing large projects from ground up to
production. For the past eight years he's been focusing on
e-commerce, SaaS and MySQL technologies. He managed
and architected database topologies for high volume site at
eBay Intl. He has several years of experience on 24X7 support
and operational tasks as well as improving database systems
for major companies. He has led MySQL global operations
team on Tier 1/2/3 support for MySQL customers. In July
2016 he has joined Percona's expert technical management
team.Contact him at @ask_dba

60

 Q&A

 Thank You!

