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Machine Learning
Where does it belong best?
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Application layer ML
When applying ML, does it have to live in the application stack?

ML
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Application layer ML
When applying ML, does it have to live in the application stack?

ML
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Application layer ML
When applying ML, does it have to live in the application stack?

ML



Machine Learning
In the data layer
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Data layer ML
When applying ML, can it live in the data layer?
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Data layer ML
When applying ML, can it live in the data layer?

ML
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Application layer ML vs Data layer ML

VS



How does it work?



AI Tables 
ML Predictive models as Database tables
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Why not ML in a database?

income debt
60000 20000
80000 25100

100000 30040
120000 36010

SELECT income, debt 
FROM income_table

Simple Example, from DB Tables to ML model
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Why not ML in a database?

income debt
60000 20000
80000 25100

100000 30040
120000 36010

DB Tables and queries 

income_table

SELECT income, debt FROM income_table
WHERE income = 80000

income debt
80000 25100

You could query the database for information in this table, 
and if your search criteria has a match, you get results.
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Why not ML in a database?

DB queries and mismatches

income debt
60000 20000
80000 25100

100000 30040
120000 36010

SELECT income, debt FROM income_table
WHERE income = 90000

income debt
90000 NULL

income_table

However, if there is no match for your search criteria you get empty results. 
Even if your search criteria is close to some data. 
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Why not ML in a database?

debt_model

Machine Learning as DB Tables 

SELECT 
  income, debt, predicted_debt
FROM 
  debt_model 
WHERE 
  income = 90120

income debt
90120 28010



There are hard problems in 
data layer ML!



Multivariate time series 
forecasting with MindsDB
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Example

Let’s consider electrical power consumption forecasting

Source: 
kaggle.com/twinkle0705/
state-wise-power-consumption-in-india
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Example



Time series forecasting can be challenging

1. Data pipeline instancing

2. High group cardinality

3. Efficient use of resources

MindsDB automates this process
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Flexible encoder-mixer philosophy

Step 1: Data 
pre-processing

Step 2: Feature engineering

Step 3: Model 
building and 
training 
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Dynamic Normalization

1. Store statistics for each series             
(one per group combination)

2. Normalize input using these stats

3. Mixer learns to predict normalized 
values

N
um

be
r o

f l
at

e 
ar

riv
al

s

Dates

Colors indicate different 
airline carriers



25

Mixers

● Neural network mixer for time series has two streams
a. learned autoregressive process yields base prediction
b. secondary stream handles for fine-tuning

● Gradient booster mixer uses LightGBM. MindsDB supports Optuna for 
stepwise hyperparameter search.

*
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Example - SQL usage

INSERT INTO predictors( name, 
   predict, 
   select_data_query, 
   Training_options ) 

VALUES ( 'PowerConsumption', 
 'Usage', 
 'SELECT * FROM training_data;',
 '{"timeseries_settings": { 

 "order_by": ["Dates"], 
 "group_by": ["States"], 
 "window": 10 

}}')

Training:



Querying:

1) Conditional single prediction

2) Batch prediction
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Example - SQL usage

SELECT Usage FROM mindsdb.PowerConsumption  WHERE Dates = 
"2021/03/14 12:34:56 ";

SELECT d.Dates, d.Usage as PrevUsage, p.Usage  FROM 
data.test 
AS d LEFT JOIN mindsdb.PowerConsumption  AS p ON 1=1;
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Single group forecasting
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Multivariate forecasting
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Visualized forecasting

https://docs.google.com/file/d/1Uhp6XWSsJZCPB-1GQHv6QBDzNafWehf4/preview


Future Work
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● Predicting data streams (e.g. Redis, Kafka)

● Improving forecasts for long horizons with multiple imputation

● Detecting gradual anomalies

● Modin integration
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Questions?
You can find us at:

● @torrmal

● @paxcema
/mindsdb/mindsdb
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