

PERCONA LIVEONLINE MAY 12 - 13th 2021

> whoami

Jorge Torres

CEO@MindsDB

Machine Learning Where does it belong best?

Application layer ML

When applying ML, does it have to live in the application stack?

Application layer ML

When applying ML, does it have to live in the application stack?

Application layer ML

When applying ML, does it have to live in the application stack?

Machine Learning In the data layer

Data layer ML

When applying ML, can it live in the data layer?

Data layer ML

When applying ML, can it live in the data layer?

Application layer ML vs Data layer ML

VS

How does it work?

AI Tables

ML Predictive models as Database tables

Simple Example, from DB Tables to ML model

SELECT income, debt
FROM income_table

income	debt
60000	20000
80000	25100
100000	30040
120000	36010

DB Tables and queries

income	debt
60000	20000
80000	25100
100000	30040
120000	36010

SELECT income, debt FROM income_table
WHERE income = 80000

income debt
80000 25100

You could query the database for information in this table, and if your search criteria has a match, you get results.

DB queries and mismatches

However, if there is no match for your search criteria you get empty results. Even if your search criteria is close to some data.

Machine Learning as DB Tables

SELECT

income, debt, predicted debt

FROM

debt model

WHERE

income = 90120

income		debt	
	90120	28010	

There are hard problems in data layer ML!

Multivariate time series forecasting with MindsDB

> whoami

Patricio Cerda-Mardini

Machine Learning Research Engineer

@paxcema

Example

Let's consider electrical power consumption forecasting

	States	Regions	latitude	longitude	Dates	Usage
0	Punjab	NR	31.519974	75.980003	02/01/2019 00:00:00	119.9
1	Haryana	NR	28.450006	77.019991	02/01/2019 00:00:00	130.3
2	Rajasthan	NR	26.449999	74.639981	02/01/2019 00:00:00	234.1
3	Delhi	NR	28.669993	77.230004	02/01/2019 00:00:00	85.8
4	UP	NR	27.599981	78.050006	02/01/2019 00:00:00	313.9
5	Uttarakhand	NR	30.320409	78.050006	02/01/2019 00:00:00	40.7

Source: kaggle.com/twinkle0705/ state-wise-power-consumption-in-india

Example

Time series forecasting can be challenging

- 1. Data pipeline instancing
- 2. High group cardinality
- 3. Efficient use of resources

MindsDB automates this process

Flexible encoder-mixer philosophy

Step 2: Feature engineering

Dynamic Normalization

- Store statistics for each series (one per group combination)
- 2. Normalize input using these stats
- 3. Mixer learns to predict normalized values

Mixers

- Neural network mixer for time series has two streams
 - a. learned autoregressive process yields base prediction
 - b. secondary stream handles for fine-tuning

 Gradient booster mixer uses LightGBM. MindsDB supports Optuna for stepwise hyperparameter search.

Example - SQL usage

Training:

```
INSERT INTO predictors( name,
                         predict,
                         select data_query,
                         Training options )
VALUES ( 'PowerConsumption',
          'Usage',
          'SELECT * FROM training data;',
          '{"timeseries settings": {
              "order by": ["Dates"],
              "group by": ["States"],
              "window": 10
```

Example - SQL usage

Querying:

1) Conditional single prediction

```
SELECT Usage FROM mindsdb.PowerConsumption WHERE Dates =
"2021/03/14 12:34:56";
```

2) Batch prediction

```
SELECT d.Dates, d.Usage as PrevUsage, p.Usage FROM
data.test
AS d LEFT JOIN mindsdb.PowerConsumption AS p ON 1=1;
```

Single group forecasting

MindsDB t+1 forecast for State Pondy

Multivariate forecasting

MindsDB t+1 forecast for State Pondy

MindsDB t+1 forecast for State Kerala

MindsDB t+1 forecast for State Chhattisgarh

MindsDB t+1 forecast for State Jharkhand

Visualized forecasting

Future Work

- Predicting data streams (e.g. Redis, Kafka)
- Improving forecasts for long horizons with multiple imputation
- Detecting gradual anomalies
- Modin integration

Questions?

You can find us at:

- @torrmal
- @paxcema 🔽 🗹 in

PERCONA LIVEONLINE MAY 12 - 13th 2021