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● Drop-in replacement for MongoDB 3.0 CE
● Free and open-source

● Additional storage engines
● PerconaFT and RocksDB

● Full online backup for PerconaFT & RocksDB

● External authentication plugin and audit plugin
● Not available in MongoDB CE

http://www.percona.com/
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Storage engines

● MMAP: B-Trees, no compression

● WiredTiger: B-Trees and compression

● PerconaFT: Fractal Trees and compression

● RocksDB: LSM Trees and compression

http://www.percona.com/
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Which storage engine to choose?

● MMAP
● Default SE, not great performance but easier 

migration if you're coming from MongoDB

● WiredTiger
● Good tradeoff between reads and writes

● RocksDB, PerconaFT
● Write-optimized engines

http://www.percona.com/
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Back to B-Trees

● Why are they so widely used?
● Acceptable/good perf for most operations – reads 

and writes

● Main limitation: write perf when data is much 
larger than RAM

http://www.percona.com/
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Simplified B-Tree
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Simplified B-Tree

Internal nodes
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Insertion in a B-Tree
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RAM vs disk

RAM

Disk

● In general: internal nodes fit in RAM, leaves do not

http://www.percona.com/
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Insertion in a B-Tree - Recap

● Find the leaf where the value has to be inserted
● Read the leaf ← an IO is needed here
● Update the leaf← an IO is needed here

● Writing the leaf to disk can be delayed
● By writing to a sequential journal instead

● Conclusion
● At least one IO is needed for a B-Tree

http://www.percona.com/
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Design rules for B-Trees

● Keep your indexes in memory
● Keep your working set in memory
● Have a right mostly insertion pattern

● All these rules come from B-Trees being IO 
bound when data is much larger than RAM

http://www.percona.com/
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Overview of Fractal Trees

http://www.percona.com/


www.percona.com  

Overview of Fractal Trees

Message 
bufferInternal nodes

http://www.percona.com/


www.percona.com  

Overview of Fractal Trees

Message 
buffer

Leaves 
(store data)

Internal nodes

http://www.percona.com/


www.percona.com  

Insertion in a Fractal Tree - 1
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Insertion in a Fractal Tree - 2
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Insertion in a Fractal Tree - 3
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Insertion in a Fractal Tree - 3
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The message buffer

● If the message buffer is full
● Messages are moved down one level
● If next buffer is full, messages go down one level 

again

● Eventually messages are applied to the leaves
● A background thread apply message to the leaves 

(checkpointing)

http://www.percona.com/
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RAM vs disk

RAM

Disk

● Similar to B-Trees

http://www.percona.com/
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Insertion in a Fractal Tree - Recap

● Update the appropriate message buffer
● Flush it if full

● No synchronous IO is needed
● Except for the journal of course (seq. write - cheap)
● Same for a B-Tree

● An IO is only performed when flushing a buffer
● A buffer stores many document
● Much more efficient

http://www.percona.com/
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Design rules for Fractal Trees

● Keep your indexes in memory
● Keep your working set in memory
● Have a right mostly insertion pattern

● These good old engineering rules no longer 
apply with fractal trees
● Because IO is no longer the bottleneck

http://www.percona.com/
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Fractal Tree - Leaves

● Leaves are larger with a fractal tree
● 4MB
● Good for write performance and for compression
● But bad for point queries

● To mitigate read performance degradation
● A 4MB leaf is made of 64KB basement nodes, 

compressed individually
● On reads, 64KB are read, not 4MB

http://www.percona.com/
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Limitations of Fractal Tree

● Checkpointing is expensive
● Performance graphs often show dips every 60s
● We're working on improvements

● Workloads with many delete operations can be 
problematic
● Documents are not deleted synchronously
● Reads may initially fetch documents that are 

discarded when reading the message buffers

http://www.percona.com/
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Reads: B-Trees vs Fractal Trees

● B-Tree
● Read the appropriate leaf node: IO needed

● Fractal Tree
● Read the appropriate leaf node: IO needed
● + some work to merge the potential messages in 

the internal buffers
● + nodes are larger

– Good for range queries
– Bad for point queries

http://www.percona.com/
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Main configuration settings

● --PerconaFTEngineCacheSize
● Cache size for data and indexes
● Data in RAM is uncompressed

● --PerconaFTDirectio
● Direct IO or filesystem cache?
● If directio=off, FS cache stores compressed data

– Can be beneficial in some scenarios

http://www.percona.com/
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Main configuration settings - 2

● --PerconaFTCollectionPageSize
● Size of the leaves for the clustered index (default: 

4MB)

● --PerconaFTCollectionReadPageSize
● Size of the basement nodes for the clustered index 

(default: 64KB)

● --PerconaFTCollectionCompression
● Compression algorithm for the clustered index: 

none, zlib, lzma, quicklz

http://www.percona.com/
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Main configuration settings - 3

● --PerconaFTIndexPageSize
● Size of the leaves for the secondary indexes 

(default: 4MB)

● --PerconaFTIndexReadPageSize
● Size of the basement nodes for the secondary 

indexes (default: 64KB)

● --PerconaFTCollectionCompression
● Compression algorithm for the secondary indexes: 

none, zlib, lzma, quicklz

http://www.percona.com/
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Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB
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Overview of RocksDB

● Developed by Facebook

● Another write-optimized engine
● Using LSM Trees

● http://rocksdb.org/

http://www.percona.com/
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LSM Trees - 1

● New insertions are kept in memory in a sorted 
buffer (memtable)

1 5 7 8 14
Memtable
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● New insertions are kept in memory in a sorted 
buffer (memtable)
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LSM Trees - 1

● New insertions are kept in memory in a sorted 
buffer (memtable)

1 5 7 8 10
Memtable

14

http://www.percona.com/
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LSM Trees - 2

● When the memtable is full, it's flushed to disk
● The corresponding .sst file is never updated

Memtable

1 5 7 8 10 14 15 19
00001.sst

DISK

RAM

http://www.percona.com/
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LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple 

places

Memtable

DISK

RAM

Initial
insertion

http://www.percona.com/
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LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple 

places
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DISK

RAM
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insertion

First 
update
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insertion
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LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple 

places

Memtable

DISK

RAM

Initial
insertion

First 
update

Initial
insertion

Latest 
update
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LSM Tree - 4

● Reading a record would then be expensive
● Because we might need to read lots of .sst files

● So a periodic compaction is performed
● .sst files are merged together

http://www.percona.com/
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LSM Tree - 4

● Before compaction

● After compaction

00001.sst 00002.sst

00003.sst 00004.sst

00005.sst 00006.sst

00007.sst

http://www.percona.com/


www.percona.com  

LSM Tree - Recap

● Like for fractal trees, the idea is to minimize I/O 
for writes
● The tradeoff is slower reads
● Like for fractal trees, deletes can be problematic

● Read performance is increased with
● Periodic compactions
● Bloom filters: can efficiently tell if a record belongs 

to a .sst file

http://www.percona.com/
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RocksDB – Main settings

● --rocksdbCacheSizeGB
● Cache size for data and indexes

● --rocksdbCompression
● Compression algorithm: none, snappy, zlib

http://www.percona.com/
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Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB
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Good old backup methods

● Cold backup
● Bring a replica down
● Copy all files
● Restart it

● Volume snapshot
● LVM, EBS, etc

● Both can work with any storage engine

http://www.percona.com/
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Online backup for PerconaFT

● The hot backup tool intercepts all system calls
● Whenever a write is performed, it is mirrored in the 

backup directory

● Run this command
db.adminCommand({backupStart: “/path/to/backup/dir”})

http://www.percona.com/
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Online backup for RocksDB

● Immutable files make backups easy
db.adminCommand({setParameter:1,

rocksdbBackup: “/path/to/backup/dir”})

● This command
● Flushes the memtable
● Creates hard links to .sst files

● You then simply need to copy the files in the 
backup directory

http://www.percona.com/


www.percona.com  

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/


www.percona.com  

Migration from MongoDB 3.0

● Easiest scenario
● PSMDB is a drop-in replacement

● Stop mongod / swap binaries / restart mongod
● https://www.percona.com/doc/percona-server-for

-mongodb/upgrading_guide_mongodb_psmdb.html

● A replica set can have MongoDB instances and 
PSMDB instances

http://www.percona.com/
https://www.percona.com/doc/percona-server-for-mongodb/upgrading_guide_mongodb_psmdb.html
https://www.percona.com/doc/percona-server-for-mongodb/upgrading_guide_mongodb_psmdb.html
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Migration from MongoDB 2.6

● A replica set can have members running 2.6 
and members running 3.0

● Upgrading a member is mostly swapping 
binaries
● But there are changes between 2.6 and 3.0
● Test carefully: perform may vary, queries may break

http://www.percona.com/
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Migration from TokuMX

● TokuMX and PSMDB have a different feature 
set

● Yellow area: migration will be difficult
● Orange area: migration will be easier
● Some helper scripts :

https://github.com/dbpercona/tokumx2_to_psmdb3_migration

TokuMX 
features

PSMDB 
features

http://www.percona.com/
https://github.com/dbpercona/tokumx2_to_psmdb3_migration
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Q&A

Thank you for attending!

http://www.percona.com/
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