
Introduction to Percona Server
for MongoDB

Stéphane Combaudon
October 28th, 2015

www.percona.com

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/

www.percona.com

● Drop-in replacement for MongoDB 3.0 CE
● Free and open-source

● Additional storage engines
● PerconaFT and RocksDB

● Full online backup for PerconaFT & RocksDB

● External authentication plugin and audit plugin
● Not available in MongoDB CE

http://www.percona.com/

www.percona.com

Storage engines

● MMAP: B-Trees, no compression

● WiredTiger: B-Trees and compression

● PerconaFT: Fractal Trees and compression

● RocksDB: LSM Trees and compression

http://www.percona.com/

www.percona.com

Which storage engine to choose?

● MMAP
● Default SE, not great performance but easier

migration if you're coming from MongoDB

● WiredTiger
● Good tradeoff between reads and writes

● RocksDB, PerconaFT
● Write-optimized engines

http://www.percona.com/

www.percona.com

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/

www.percona.com

Back to B-Trees

● Why are they so widely used?
● Acceptable/good perf for most operations – reads

and writes

● Main limitation: write perf when data is much
larger than RAM

http://www.percona.com/

www.percona.com

Simplified B-Tree

http://www.percona.com/

www.percona.com

Simplified B-Tree

Internal nodes

http://www.percona.com/

www.percona.com

Simplified B-Tree

Leaves
(store data)

Internal nodes

http://www.percona.com/

www.percona.com

Insertion in a B-Tree

20

10

1,5,9 20, 28

30

10, 17 30

http://www.percona.com/

www.percona.com

Insertion in a B-Tree

20

10

1,5,9 20, 28

30

10, 17 30

Let's insert 25
in the tree

http://www.percona.com/

www.percona.com

Insertion in a B-Tree

20

10

1,5,9 20, 28

30

10, 17 30

Let's insert 25
in the tree 25 >= 20

http://www.percona.com/

www.percona.com

Insertion in a B-Tree

20

10

1,5,9 20, 28

30

10, 17 30

Let's insert 25
in the tree

25 < 30

http://www.percona.com/

www.percona.com

Insertion in a B-Tree

20

10

1,5,9 20, 25, 28

30

10, 17 30

Let's insert 25
in the tree

http://www.percona.com/

www.percona.com

RAM vs disk

RAM

Disk

● In general: internal nodes fit in RAM, leaves do not

http://www.percona.com/

www.percona.com

Insertion in a B-Tree - Recap

● Find the leaf where the value has to be inserted
● Read the leaf ← an IO is needed here
● Update the leaf← an IO is needed here

● Writing the leaf to disk can be delayed
● By writing to a sequential journal instead

● Conclusion
● At least one IO is needed for a B-Tree

http://www.percona.com/

www.percona.com

Design rules for B-Trees

● Keep your indexes in memory
● Keep your working set in memory
● Have a right mostly insertion pattern

● All these rules come from B-Trees being IO
bound when data is much larger than RAM

http://www.percona.com/

www.percona.com

Overview of Fractal Trees

http://www.percona.com/

www.percona.com

Overview of Fractal Trees

Message
bufferInternal nodes

http://www.percona.com/

www.percona.com

Overview of Fractal Trees

Message
buffer

Leaves
(store data)

Internal nodes

http://www.percona.com/

www.percona.com

Insertion in a Fractal Tree - 1

20

10 30

1,5,9 10, 17 20, 28 30

http://www.percona.com/

www.percona.com

Insertion in a Fractal Tree - 2

20

10 30

1,5,9 10, 17 20, 28 30

Let's insert 25
in the tree

http://www.percona.com/

www.percona.com

Insertion in a Fractal Tree - 3

20

10 30

1,5,9 10, 17 20, 28 30

Let's insert 25
in the tree Insert:

25

http://www.percona.com/

www.percona.com

Insertion in a Fractal Tree - 3

20

10 30

1,5,9 10, 17 20, 28 30

Let's insert 25
in the tree Insert:

25 DONE!

http://www.percona.com/

www.percona.com

The message buffer

● If the message buffer is full
● Messages are moved down one level
● If next buffer is full, messages go down one level

again

● Eventually messages are applied to the leaves
● A background thread apply message to the leaves

(checkpointing)

http://www.percona.com/

www.percona.com

RAM vs disk

RAM

Disk

● Similar to B-Trees

http://www.percona.com/

www.percona.com

Insertion in a Fractal Tree - Recap

● Update the appropriate message buffer
● Flush it if full

● No synchronous IO is needed
● Except for the journal of course (seq. write - cheap)
● Same for a B-Tree

● An IO is only performed when flushing a buffer
● A buffer stores many document
● Much more efficient

http://www.percona.com/

www.percona.com

Design rules for Fractal Trees

● Keep your indexes in memory
● Keep your working set in memory
● Have a right mostly insertion pattern

● These good old engineering rules no longer
apply with fractal trees
● Because IO is no longer the bottleneck

http://www.percona.com/

www.percona.com

Fractal Tree - Leaves

● Leaves are larger with a fractal tree
● 4MB
● Good for write performance and for compression
● But bad for point queries

● To mitigate read performance degradation
● A 4MB leaf is made of 64KB basement nodes,

compressed individually
● On reads, 64KB are read, not 4MB

http://www.percona.com/

www.percona.com

Limitations of Fractal Tree

● Checkpointing is expensive
● Performance graphs often show dips every 60s
● We're working on improvements

● Workloads with many delete operations can be
problematic
● Documents are not deleted synchronously
● Reads may initially fetch documents that are

discarded when reading the message buffers

http://www.percona.com/

www.percona.com

Reads: B-Trees vs Fractal Trees

● B-Tree
● Read the appropriate leaf node: IO needed

● Fractal Tree
● Read the appropriate leaf node: IO needed
● + some work to merge the potential messages in

the internal buffers
● + nodes are larger

– Good for range queries
– Bad for point queries

http://www.percona.com/

www.percona.com

Main configuration settings

● --PerconaFTEngineCacheSize
● Cache size for data and indexes
● Data in RAM is uncompressed

● --PerconaFTDirectio
● Direct IO or filesystem cache?
● If directio=off, FS cache stores compressed data

– Can be beneficial in some scenarios

http://www.percona.com/

www.percona.com

Main configuration settings - 2

● --PerconaFTCollectionPageSize
● Size of the leaves for the clustered index (default:

4MB)

● --PerconaFTCollectionReadPageSize
● Size of the basement nodes for the clustered index

(default: 64KB)

● --PerconaFTCollectionCompression
● Compression algorithm for the clustered index:

none, zlib, lzma, quicklz

http://www.percona.com/

www.percona.com

Main configuration settings - 3

● --PerconaFTIndexPageSize
● Size of the leaves for the secondary indexes

(default: 4MB)

● --PerconaFTIndexReadPageSize
● Size of the basement nodes for the secondary

indexes (default: 64KB)

● --PerconaFTCollectionCompression
● Compression algorithm for the secondary indexes:

none, zlib, lzma, quicklz

http://www.percona.com/

www.percona.com

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/

www.percona.com

Overview of RocksDB

● Developed by Facebook

● Another write-optimized engine
● Using LSM Trees

● http://rocksdb.org/

http://www.percona.com/

www.percona.com

LSM Trees - 1

● New insertions are kept in memory in a sorted
buffer (memtable)

1 5 7 8 14
Memtable

http://www.percona.com/

www.percona.com

LSM Trees - 1

● New insertions are kept in memory in a sorted
buffer (memtable)

1 5 7 8 14
Memtable

Insert 10

http://www.percona.com/

www.percona.com

LSM Trees - 1

● New insertions are kept in memory in a sorted
buffer (memtable)

1 5 7 8 10
Memtable

14

http://www.percona.com/

www.percona.com

LSM Trees - 2

● When the memtable is full, it's flushed to disk
● The corresponding .sst file is never updated

Memtable

1 5 7 8 10 14 15 19
00001.sst

DISK

RAM

http://www.percona.com/

www.percona.com

LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple

places

Memtable

DISK

RAM

Initial
insertion

http://www.percona.com/

www.percona.com

LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple

places

Memtable

DISK

RAM

Initial
insertion

First
update

Initial
insertion

http://www.percona.com/

www.percona.com

LSM Trees - 3

● After some time, we have many .sst files
● Updates of the same record can be at multiple

places

Memtable

DISK

RAM

Initial
insertion

First
update

Initial
insertion

Latest
update

http://www.percona.com/

www.percona.com

LSM Tree - 4

● Reading a record would then be expensive
● Because we might need to read lots of .sst files

● So a periodic compaction is performed
● .sst files are merged together

http://www.percona.com/

www.percona.com

LSM Tree - 4

● Before compaction

● After compaction

00001.sst 00002.sst

00003.sst 00004.sst

00005.sst 00006.sst

00007.sst

http://www.percona.com/

www.percona.com

LSM Tree - Recap

● Like for fractal trees, the idea is to minimize I/O
for writes
● The tradeoff is slower reads
● Like for fractal trees, deletes can be problematic

● Read performance is increased with
● Periodic compactions
● Bloom filters: can efficiently tell if a record belongs

to a .sst file

http://www.percona.com/

www.percona.com

RocksDB – Main settings

● --rocksdbCacheSizeGB
● Cache size for data and indexes

● --rocksdbCompression
● Compression algorithm: none, snappy, zlib

http://www.percona.com/

www.percona.com

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/

www.percona.com

Good old backup methods

● Cold backup
● Bring a replica down
● Copy all files
● Restart it

● Volume snapshot
● LVM, EBS, etc

● Both can work with any storage engine

http://www.percona.com/

www.percona.com

Online backup for PerconaFT

● The hot backup tool intercepts all system calls
● Whenever a write is performed, it is mirrored in the

backup directory

● Run this command
db.adminCommand({backupStart: “/path/to/backup/dir”})

http://www.percona.com/

www.percona.com

Online backup for RocksDB

● Immutable files make backups easy
db.adminCommand({setParameter:1,

rocksdbBackup: “/path/to/backup/dir”})

● This command
● Flushes the memtable
● Creates hard links to .sst files

● You then simply need to copy the files in the
backup directory

http://www.percona.com/

www.percona.com

Agenda

● What is PSMDB?

● Fractal Trees & PerconaFT

● LSM Trees & RocksDB

● Backups

● Migration to PSMDB

http://www.percona.com/

www.percona.com

Migration from MongoDB 3.0

● Easiest scenario
● PSMDB is a drop-in replacement

● Stop mongod / swap binaries / restart mongod
● https://www.percona.com/doc/percona-server-for

-mongodb/upgrading_guide_mongodb_psmdb.html

● A replica set can have MongoDB instances and
PSMDB instances

http://www.percona.com/
https://www.percona.com/doc/percona-server-for-mongodb/upgrading_guide_mongodb_psmdb.html
https://www.percona.com/doc/percona-server-for-mongodb/upgrading_guide_mongodb_psmdb.html

www.percona.com

Migration from MongoDB 2.6

● A replica set can have members running 2.6
and members running 3.0

● Upgrading a member is mostly swapping
binaries
● But there are changes between 2.6 and 3.0
● Test carefully: perform may vary, queries may break

http://www.percona.com/

www.percona.com

Migration from TokuMX

● TokuMX and PSMDB have a different feature
set

● Yellow area: migration will be difficult
● Orange area: migration will be easier
● Some helper scripts :

https://github.com/dbpercona/tokumx2_to_psmdb3_migration

TokuMX
features

PSMDB
features

http://www.percona.com/
https://github.com/dbpercona/tokumx2_to_psmdb3_migration

www.percona.com

Q&A

Thank you for attending!

http://www.percona.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

