

Introduction to Percona Server for MongoDB

Stéphane Combaudon October 28th, 2015

Agenda

- What is PSMDB?
- Fractal Trees & PerconaFT
- LSM Trees & RocksDB
- Backups
- Migration to PSMDB

- Drop-in replacement for MongoDB 3.0 CE
 - Free and open-source
- Additional storage engines
 - PerconaFT and RocksDB
- Full online backup for PerconaFT & RocksDB
- External authentication plugin and audit plugin
 - Not available in MongoDB CE

Storage engines

MMAP: B-Trees, no compression

WiredTiger: B-Trees and compression

PerconaFT: Fractal Trees and compression

RocksDB: LSM Trees and compression

Which storage engine to choose?

- MMAP
 - Default SE, not great performance but easier migration if you're coming from MongoDB
- WiredTiger
 - Good tradeoff between reads and writes
- RocksDB, PerconaFT
 - Write-optimized engines

Agenda

What is PSMDB?

Fractal Trees & PerconaFT

LSM Trees & RocksDB

Backups

Migration to PSMDB

Back to B-Trees

- Why are they so widely used?
 - Acceptable/good perf for most operations reads and writes
- Main limitation: write perf when data is much larger than RAM

Simplified B-Tree

Simplified B-Tree

Simplified B-Tree

RAM vs disk

• In general: internal nodes fit in RAM, leaves do not

Insertion in a B-Tree - Recap

- Find the leaf where the value has to be inserted
- Read the leaf ← an IO is needed here
- Update the leaf ← an IO is needed here
- Writing the leaf to disk can be delayed
 - By writing to a sequential journal instead
- Conclusion
 - At least one IO is needed for a B-Tree

Design rules for B-Trees

- Keep your indexes in memory
- Keep your working set in memory
- Have a right mostly insertion pattern

 All these rules come from B-Trees being IO bound when data is much larger than RAM

Overview of Fractal Trees

Overview of Fractal Trees

Overview of Fractal Trees

The message buffer

- If the message buffer is full
 - Messages are moved down one level
 - If next buffer is full, messages go down one level again

- Eventually messages are applied to the leaves
 - A background thread apply message to the leaves (checkpointing)

RAM vs disk

Similar to B-Trees

- Update the appropriate message buffer
 - Flush it if full
- No synchronous IO is needed
 - Except for the journal of course (seq. write cheap)
 - Same for a B-Tree
- An IO is only performed when flushing a buffer
 - A buffer stores many document
 - Much more efficient

Design rules for Fractal Trees

- Keep your indexes in memory
- Keep your working set in memory
- Have a right mostly insertion pattern

- These good old engineering rules no longer apply with fractal trees
 - Because IO is no longer the bottleneck

Fractal Tree - Leaves

- Leaves are larger with a fractal tree
 - 4MB
 - Good for write performance and for compression
 - But bad for point queries

- To mitigate read performance degradation
 - A 4MB leaf is made of 64KB basement nodes, compressed individually
 - On reads, 64KB are read, not 4MB

Limitations of Fractal Tree

- Checkpointing is expensive
 - Performance graphs often show dips every 60s
 - We're working on improvements
- Workloads with many delete operations can be problematic
 - Documents are not deleted synchronously
 - Reads may initially fetch documents that are discarded when reading the message buffers

Reads: B-Trees vs Fractal Trees

- B-Tree
 - Read the appropriate leaf node: IO needed
- Fractal Tree
 - Read the appropriate leaf node: IO needed
 - + some work to merge the potential messages in the internal buffers
 - + nodes are larger
 - Good for range queries
 - Bad for point queries

Main configuration settings

- --PerconaFTEngineCacheSize
 - Cache size for data and indexes
 - Data in RAM is uncompressed
- --PerconaFTDirectio
 - Direct IO or filesystem cache?
 - If directio=off, FS cache stores compressed data
 - Can be beneficial in some scenarios

Main configuration settings - 2

- --PerconaFTCollectionPageSize
 - Size of the leaves for the clustered index (default: 4MB)
- --PerconaFTCollectionReadPageSize
 - Size of the basement nodes for the clustered index (default: 64KB)
- --PerconaFTCollectionCompression
 - Compression algorithm for the clustered index: none, zlib, Izma, quicklz

Main configuration settings - 3

- --PerconaFTIndexPageSize
 - Size of the leaves for the secondary indexes (default: 4MB)
- --PerconaFTIndexReadPageSize
 - Size of the basement nodes for the secondary indexes (default: 64KB)
- --PerconaFTCollectionCompression
 - Compression algorithm for the secondary indexes: none, zlib, lzma, quicklz

Agenda

- What is PSMDB?
- Fractal Trees & PerconaFT
- LSM Trees & RocksDB
- Backups
- Migration to PSMDB

Overview of RocksDB

Developed by Facebook

- Another write-optimized engine
 - Using LSM Trees

http://rocksdb.org/

 New insertions are kept in memory in a sorted buffer (memtable)

 New insertions are kept in memory in a sorted buffer (memtable)

 New insertions are kept in memory in a sorted buffer (memtable)

- When the memtable is full, it's flushed to disk
 - The corresponding .sst file is never updated

- After some time, we have many .sst files
 - Updates of the same record can be at multiple places

- After some time, we have many .sst files
 - Updates of the same record can be at multiple places

- After some time, we have many .sst files
 - Updates of the same record can be at multiple places

- Reading a record would then be expensive
 - Because we might need to read lots of .sst files

- So a periodic compaction is performed
 - .sst files are merged together

Before compaction

After compaction

00007.sst

LSM Tree - Recap

- Like for fractal trees, the idea is to minimize I/O for writes
 - The tradeoff is slower reads
 - Like for fractal trees, deletes can be problematic
- Read performance is increased with
 - Periodic compactions
 - Bloom filters: can efficiently tell if a record belongs to a .sst file

RocksDB - Main settings

- --rocksdbCacheSizeGB
 - Cache size for data and indexes

- --rocksdbCompression
 - Compression algorithm: none, snappy, zlib

Agenda

- What is PSMDB?
- Fractal Trees & PerconaFT
- LSM Trees & RocksDB
- Backups
- Migration to PSMDB

Good old backup methods

- Cold backup
 - Bring a replica down
 - Copy all files
 - Restart it

- Volume snapshot
 - LVM, EBS, etc

Both can work with any storage engine

Online backup for PerconaFT

- The hot backup tool intercepts all system calls
 - Whenever a write is performed, it is mirrored in the backup directory

Run this command

```
db.adminCommand({backupStart: "/path/to/backup/dir"})
```

Online backup for RocksDB

Immutable files make backups easy

```
db.adminCommand({setParameter:1,
rocksdbBackup: "/path/to/backup/dir"})
```

- This command
 - Flushes the memtable
 - Creates hard links to .sst files
- You then simply need to copy the files in the backup directory

Agenda

- What is PSMDB?
- Fractal Trees & PerconaFT
- LSM Trees & RocksDB

- Backups
- Migration to PSMDB

Migration from MongoDB 3.0

- Easiest scenario
 - PSMDB is a drop-in replacement

- Stop mongod / swap binaries / restart mongod
 - https://www.percona.com/doc/percona-server-for
 -mongodb/upgrading_guide_mongodb_psmdb.html

 A replica set can have MongoDB instances and PSMDB instances

Migration from MongoDB 2.6

 A replica set can have members running 2.6 and members running 3.0

- Upgrading a member is mostly swapping binaries
 - But there are changes between 2.6 and 3.0
 - Test carefully: perform may vary, queries may break

Migration from TokuMX

TokuMX and PSMDB have a different feature set

- Yellow area: migration will be difficult
- Orange area: migration will be easier
- Some helper scripts: https://github.com/dbpercona/tokumx2_to_psmdb3_migration

Q&A

Thank you for attending!