How to improve MongoDB performance
with proper queries

Percona Webinar - November 29th
Tim Vaillancourt

o PERCONA

y

o9\

*whoami

{

name: “tim”,
lastname: “vaillancourt”,
employer: “percona”,
techs: [
“mongodb”,
“mysql”,
“cassandra”,
“redis”,
“rabbitmq”,
“solr”,
“kubernetes”,
“mesos”
“kafka”,
“couch*”,
“python”,
“golang”

Agenda

. Document Design

. Common query operators

. Indexes

. Evaluating queries performance
. Good Practices

. Common Issues

. Q&A

3 © 2018 Percona

Document Design

Document Design

MongoDB is schema less database which means no predefined
schema but this doesn't means it will perform well in a really

messed schema.
Avoid complex documents as it may become complex to query.

Document Design - Bad Practice

db.people.findOne ()

{
" id" : ObjectId("5bfd9%0bl8791fb8236b8abl3"),

"name" : "Joseph",

"address id" : ObjectId("5bfd90c58791fb8236b8abl4")
}
db.addresses.findOne ()

{
" id" : ObjectId("5b£fd90c58791£fb8236b8abl4"),

"Street" : "Street Name",
"number" : 100,
"zip" : "ASDFG"

6 © 2018 Percona

Document Design - Good Practice

db.people.find () .pretty ()
{
" id" : ObjectId("5bfd%08a8791fb8236b8abll"),
"name" : "Joseph",
"address" : {
"street" : "Street Name",
"number" : 100,

"zip" : "ASDFG"

7 © 2018 Percona

Document Design

. Do not create deep level of documents as it may become
complex to query

. Would be easier to query by the top level fields and also to
index. (We will talk about it shortly)

Document Design

. Use efficient data types to save storage + index size + RAM

O

Store string date: "2018-11-29T17:24:50.2882"

- as -
ISODate("2018-11-29T17:24:50.2882") (48% smaller)
Store string number: “12321139”

- aS -
12321139 (25% smaller)
Store string boolean: “true”

- aS -
true (53% smaller)

© 2018 Percona OPERCONA

Common Query Operators

Common Query Operators

. MongoDB uses javascript like query language and for who is
just starting with MongoDB it may seem a bit confusing.

. The default mongodb syntax follows:
db.collection.command({args}) being:

db = database variable
Collection = the collection name
Command an operation such as find() or remove

{args} argument for the operation such as the where clause.

11 © 2018 Percona o PERCONA

Common Query Operators

. The following query will return all the documents in a collection
that matches the name field.

> db.foo.find({name : 'Joseph'})

. The following query will return the same result, but with only
the “ id” (default) and “name” fields; this is more efficient.

> db.foo.find({name : 'Joseph'}, {name: 1})

12 © 2018 Percona 0 PERCONA

Common Query Operators

. Additionally, for numeric/date fields it is possible to use:
Sgt, Sgte, Slt, Slte, Sin

> db.foo.find({code : {Sgte : 1, Slte: 10}})
> db.foo.find({code : {$in : [1,2,3,4,5,6,7,8,9,101})

Slte means less than and equal and the Slt only less than. Doesn't include the value
for comparison.

13 © 2018 Percona OPERCONA

Common Query Operators

It is possible to check if a field exists as well using the Sexists
command.

> db.foo.find({address : {Sexists : true})

1 © 2018 percons OPERCONA

Common Query Operators

. By default the operator is Sand, so, there is no need to use
Sand just add one expression after another.

> db.foo.find({Sand : [{name : 'Joseph'}, {address : {S$Sexists : true}}])
> db.foo.find({name : 'Joseph', address : {$exists : true}})

15 © 2018 Percona OPERCONA

Common Query Operators

16

. The Sor command works very similarly to the Sin.
o Caveat: Sor and Sin will run more than one query in background.

> db.foo.find ({$Sor : [{code : 1}, {code : 2}1])
> db.foo.find({code : {$in : [1,2]})

. Sor will collection-scan unless all clauses have an index!
. Sin generally executes faster when matches are for 1 field only

© 2018 Percona OPERCONA

Common Query Operators

. Regex is also an option to search for partial text:

> db.foo.find({name : /seph/})

. Regex can be expensive. For lots of text searches, try Stext:

> db.foo.find({ Stext: { S$search: "seph" } })

Note: only 1 Stext index is possible per-collection

17 © 2018 Percona OPERCONA

Common Query Operators

. We can use all the operators at once in order to retrieve the
data we need.

> db.foo.find({name : /seph/, address : {S$Sexists: true}, age : {Sgte :
30} })

18 © 2018 Percona OPERCONA

Indexes

How does index work?

. Not only MongoDB but most of the databases uses b-tree style
indexes

. Indexes help the database to "know" where a document is and

if it exists, instead of reading the entire collection the optimizer
can evaluate if the data can be retrieved by the index

20 © 2018 percon OPERCONA

How does index work?

A-Z

/\

A-L

N

A-G

21

H-L

©©©©©©©©©©©©

How does index work?

Running a query without indexes will result in a collection scan.
Collection Scan in, in the other words a process where all the
documents in a collection is opened, evaluated against the
where condition and then returned or not.

22 © 2018 Percona 0 PERCONA

How does index work?

. Documents may be huge and the collection scan is really

resource intensive.
. Indexes will be the "shortcut" to the query optimizer to find the

docs.

)3 © 2018 Percons OPERCONA

Good Practices

. Do not create a lot of indexes as for each index the overhead to
write increases
. Use the more restrictive field as the first field in a index.

. Avoid duplicate indexes
. Match the index direction to your common sort patterns:

o Ascending (-1)
o Descending (1)

24 © 2018 Percona 0 PERCONA

Good Practices

. Compound Indexes

o Several fields supported that are read Left -> Right
m Index can be partially-read in queries

O Left-most fields should not be duplicated!

m AllIndexes below are duplicates of the first index:
{username: 1, status: 1, date: 1, count: -1}
{username: 1, status: 1, data: 1 }

{username: 1, status: 1}
{username: 1}

25 © 2018 Percona

Evaluating queries performance

Evaluating queries performance

. Within small databases (dataset entire in ram) it is very unlikely
to have performance issues.

. However in a production environment with high concurrency
and with the low response time expected we need to make
sure the queries are running with the best execution plan.

27 © 2018 percon OPERCONA

Evaluating queries performance

. But.. what is the Query Optimizer?

o Like other databases the MongoDB query language is
declarative. Meaning we ask the database to get the data but

we don't teach the database how to do it.
o The Query optimizer is the responsible to finding the best path

to get the data.

28 © 2018 Percona o PERCONA

Evaluating queries performance

If there are no indexes in the database the Query Optimizer will
always read all the documents to answer a query.

Each index increase the cost of performing a write, so, creating
a lot of indexes will help

29 © 2018 percon OPERCONA

How to evaluate index usage:

. We can use .explain() to evaluate the execution plan;

db.foo.find({myvalue
'cfcd208495d56befbbe/dff9£98764da’'}) .explain (

)

30 © 2018 percons OPERCONA

Examples

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "percona.foo",
"indexFilterSet" : false,
"parsedQuery" {
"myfield" {
"Seq" "cfcd208495d565ef66e7df£9£98764da"
}
}y
"winningPlan" {
"stage" "COLLSCAN",
"filter" {
"myfield" : {
"Seg" : "cfcd208495d565ef66e7dff9f98764da"

31

© 2018 Percona

Evaluating queries performance

. As the query explain returned COLLSCAN we are absolutely
sure there is no index in the 'myfield’ field and the database
needed to read all the documents in order to return the result.

3 © 2018 percon OPERCONA

Examples

"queryPlanner" : {

"plannerVersion" : 1,

"namespace" : "percona.foo",
"indexFilterSet" : false,
"parsedQuery" : {

"myvalue" : {
"Seqg" : "cfcd208495d565ef66e7dff9f98764da"
}
}y
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
33 © 2018 Percona

Finding Slow Queries

. We are not going to execute every query one by one by hand.
MongoDB features slow query log as well as the profiler to help
us finding slow queries.

2 © 2018 Percons OPERCONA

Finding Slow Queries in the Logs

command percona.smalcollection

appName: "MongoDB Shell" command: find { find: "foo", filter: { myfield: "aasvere" } }
planSummary: COLLSCAN keysExamined:0 docsExamined:897620 cursorExhausted:1 numYields:7017
nreturned:0 reslen:95 locks:{ Global: { acquireCount: { r: 14036 } }, Database: {
acquireCount: { r: 7018 } }, Collection: { acquireCount: { r: 7018 } } }

protocol:op command 691lms

2018-11-28T16:15:02.616-0200 I COMMAND [conn6] command percona.smalcollection appName:
"MongoDB Shell" command: find { find: "foo", filter: { myfield: "LOJgBjo9Qnf" } }
planSummary: COLLSCAN keysExamined:0 docsExamined:897620 cursorExhausted:1 numYields:7015
nreturned:1l reslen:383 locks:{ Global: { acquireCount: { r: 14032 } }, Database: {
acquireCount: { r: 7016 } }, Collection: { acquireCount: { r: 7016 } } }

protocol:op command 546éms

35 © 2018 Percona o PERCONA

Finding Slow Queries in the Logs

2018-11-28T16:17:43.388-0200 I COMMAND [conn7] command percona.smalcollection appName:
"MongoDB Shell" command: find { find: "foo", filter: { myfield: "LOJgBj9Qnf" } }
planSummary: IXSCAN { myfield: 1 } keysExamined:1 docsExamined:1 cursorExhausted:1l
numYields:0 nreturned:1 reslen:383 locks:{ Global: { acquireCount: { r: 2 } }, Database: {
acquireCount: { r: 1 } }, Collection: { acquireCount: { r: 1 } } } protocol:op command 2ms

36 © 2018 Percona o PERCONA

Finding Slow Queries with Profiler

. With profiler it is possible to record any query taking more than
x seconds or all the queries.

. Profileris per database and will create a collection called
system.profile.

. Commands to enable profiler:

db.setProfilingLevel (1,<time ms>)
db.setProfilingLevel (2)

37 © 2018 Percona o PERCONA

Finding Slow Queries with Profiler

db.system.profile.find () .sort ({Snatural :-1}).limit(1l) .pretty ()

{

38

"op" : "query",
"ns" : "percona.foo",
"query" : {
"find" : "foo",
"filter" : {
"myfield" : "aasvere"
}
}y
"keysExamined" : O,
"docsExamined" : O,
"cursorExhausted" : true,

© 2018 Percona OPERCONA

Good Practices

Good Practices

. There are a lot of tools out there to analyze slow queries in
MongoDB:

o PT-QUERY-DIGEST
o MTOOLS
o "GREP"

40 © 2018 Percona o PERCONA

Evaluate queries plan

. pt-query-digest creates a report of the slowest queries in the

database.
. It uses the system.profile collection with recorded queries to

generate a list of common slow queries

41 © 2018 Percona 0 PERCONA

Evaluate queries plan

42

Query 2: 0.00 QPS, ID 1a6443c2db9661f3aad8edb6b877e45d

Ratio 1.00

(docs scanned/returned)

Time range: 2017-01-11 12:58:26.519 -0300 ART to 2017-01-11 12:58:26.686 -0300 ART

Attribute

Count (docs)
Exec Time ms
Docs Scanned
Docs Returned
Bytes recv
String:
Namespaces
Fingerprint

pct total min max avg 95% stddev median
36

(4] 0 0 0 (4] (4] 0 0

0 148.00 0.00 74.00 4.11 74.00 16.95 0.00

2 148.00 0.00 74.00 4.11 74.00 16.95 0.00

0 2.11M 215.00 1.05M 58.48K 1.065M 240.22K 215.00

samples.coll
$gte, $1t, $meta, $sortkKey, filter,find,projection,shardVersion,sort,user_id,user_id

© 2018 Percona 0 PERCONA

Evaluate queries plan PMM

If you'd like to see in a graphical way we have PMM with tons
of metrics and also the QAN
. This is very useful for a quick overview in the system

a3 © 2018 Percons OPERCONA

Evaluate queries plan

Top 6 of 6 Queries by % Grand Total Time (%GTT) Display All queries First seen

Query Abstract Count Latency

100.00% 0.37QPS] 15.93k 100.00% i 2.70 secavg

99.98% 0.30QPS 12.90k 81.01% 3.33 secavg
0.01% 0.04QPS 1.53k 9.59% 3.22 msavg
<0.01 0.03QPS 1.47k 9.24% 3 1.27 msavg
<0.01 <0.01QPS 1.00 0.01% 32.00 msavg
<0.01 <0.01QPS 14.00 0.09% 1.07 ms avg

<0.01 <0.01QPS 9.00 0.06% 122 msavg

No more queries for selected time range

44 © 2018 Percona O PERCONA

Evaluate queries plan

MTOOLS in the other hand can parse logs and show the slowest
queries, most time consuming and a lot of different filters/sorts

More info can be found:
http://blog.rueckstiess.com/mtools/mlodfilter.html

a5 © 2018 Percona OPERCONA

http://blog.rueckstiess.com/mtools/mlogfilter.html

Evaluate queries plan

. In house scripts are very useful, there are a couple of scripts in
github to help you to evaluate query execution plan and time

. https://github.com/search?g=mongodb+log+parser

a6 © 2018 Percona OPERCONA

https://github.com/search?q=mongodb+log+parser

Common Issues

Common Issues

. When running aggregation, if using $unwind the new
document doesn't have index.

. The space used by $unwind is equal to the size of the
document multiplied by the array.

. Using .skip() doesn't improve performance, in fact it does
Increase the response time.

. Swhere command doesn't use index.

a8 © 2018 percon OPERCONA

Common Issues

49

. Tons of COLLSCAN can bring your server down.
. The oplog.rs collection doesn't have any index. It will

always run a COLLSCAN.

. Server side queries (map reduce) doesn't appear in the

currentOP() and runs outside of the database scope - May
lead to an OOM issue

Common Issues

. Usually performance is better when the working set +
indexes fits in RAM.

50 © 2018 percons OPERCONA

Questions

