
©	2017	Percona1

Emanuel	Calvo

Demystifying	Postgres	Logical	Replication
An	introduction	to	the	upcoming	feature

Sr.	Technical	Services	Engineer	-	Remote	DBA	
Webinar	
June	15th

©	2017	Percona2

Who’s	me?
▪Known	as	3manuek.	More	info	at	3manuek.com	
▪Currently	working	as	a	Remote	DBA	at	Percona.	
▪Past	positions:	PalominoDB,	2ndQuadrant,	iMedicare,	8kData,	Pythian,	
Globant.

http://3manuek.com

©	2017	Percona3

The	path	of	the	replication	in	Postgres
▪ Streaming replication incorporated in 9.0.
▪ Cascading streaming replication introduced in 9.2.
▪ Switch timeline added in 9.3.
▪ Logical Decoding added in 9.4.
▪ More support to LD added in 9.6.
▪ Postgres 10 Logical replication natively supported.

©	2017	Percona4

Streaming	and	logical	replication
▪ Streaming replication is a byte-by-byte replication, the whole instance (all

databases) are replicated.
▪ Logical replication is supported through pglogical for +9.4
▪ Natively supported in the next Postgres release (10).

©	2017	Percona5

Replication	flow	for	MySQL	DBAs
▪ MySQL

• Engine log + Binlog -> byte encoded -> binlog stream -> binlog apply
• Cross-engine Events are append to the binlog (unless skipped

sql_log_bin)
• Slaves filter using do%
• Row_format: Replicates the change or the complete statement

▪ Postgres
• WAL -> Logical Decoding/output_plugin -> logical log -> sender ->

receiver & apply
• Filtering is done at publisher
• Closer to row based replication

©	2017	Percona6

Feature	capabilities
▪ LR replicates data objects based upon their replication identity (generally a

primary key).
▪ Destination server is writable. Different indexes and security definition.
▪ Cross-version support
▪ Event-based filtering
▪ Less write amplification than streaming replication
▪ Publications can have several subscriptions

©	2017	Percona7

What	can	be	achieved	with	LR?
▪ Storage flexibility through replicating smaller sets (even partitioned tables)
▪ Flexible topology
▪ Minimum server load compared with trigger based solutions
▪ Allows parallel streaming across publishers
▪ Migrations and upgrades
▪ Multi source replication for consolidation
▪ Data distribution
▪ Flexible replication chains
▪ Data transformation

©	2017	Percona8

Limitations
▪ Can’t stream over to the same host (subscription will get locked).
▪ Tables must have the same full qualified name between publication and

subscription.
▪ Subscriptions can have more columns or different order but the types and

column names must match between P/S.
▪ Database superuser is needed for P/S creation.

©	2017	Percona9

Elements
▪ Logical Decoding

• Replication Slots
• Output plugin

▪ Exported Snapshot
▪ Publication
▪ Subscription

©	2017	Percona10

[Logical]	Replication	slots
▪ Keep track of the replication.
▪ Each replica stream has one in the origin for tracking consuming changes.
▪ Locations are explicitly in LSN (log sequence number).
▪ catalog_xmin is the transaction number
▪ Slots are placed in the origin.

©	2017	Percona11

Example	of	[l]	replication	slots

©	2017	Percona12

Output	Plugin
▪ Converts WAL records entries into custom output
▪ Internal plugin name is pgoutput.
▪ For testing Logical Decoding capabilities, test_decoding.

©	2017	Percona13

Exported	snapshot
▪ Sharing visibility between transactions by exporting the current snapshot of

the transaction.
▪ This is used for the initial COPY.
▪ Can be used to query outside a transaction but sharing its visibility.

©	2017	Percona14

Publication
▪ Publications can have more than one subscriber.
▪ Tables added to the publication must be declared with REPLICA IDENTITY.

Otherwise subsequent operations will fail.

©	2017	Percona15

publication_parameter
publish	(string)	

'insert,	update,	delete'	is	the	default	(all	events).

©	2017	Percona16

Subscription
▪ Subscriptions receive changes through replication slots.
▪ More than one replication slot may needed for the initial data copy.
▪ The session_replication_role is set to replica in order to avoid triggers on

tables to be executed on replica.
▪ DDL of replicated tables must previously exist.
▪ If creating a replication slot, it will use the name of the subscriber, so

beware as slots are in the origin (you will need to specify different
subscription names across subscribers).
▪ You can have many subscriber to one publication.

©	2017	Percona17

Subscription	—cont
▪ You can synchronize tables by using REFRESH option.

ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...] { REFRESH [WITH
(refresh_option value [, ...])] | SKIP REFRESH }
ALTER SUBSCRIPTION name REFRESH PUBLICATION [WITH (refresh_option value [, ...])]

refresh_option
 copy_data (boolean)

©	2017	Percona18

subscription_parameter
copy_data	
create_slot	
enabled	
slot_name	
synchronous_commit	
connect	(afecta	copy_data,	create_slot	y	enabled)

©	2017	Percona19

Examples

©	2017	Percona20

Basic	definition
CREATE PUBLICATION P_main_P0 FOR TABLE main_shard0 WITH
(publish = 'insert, update'); -- no delete

CREATE SUBSCRIPTION S_main_P0
 CONNECTION 'port=7777 user=postgres dbname=master'
 PUBLICATION P_main_P0 WITH (create_slot =true, copy_data
=true);

NOTE: Slot name will be the subscription name in the publisher

©	2017	Percona21

Adding	publication	sources	and	updating	subscriptions

CREATE PUBLICATION P_queue_test FOR TABLE queue WITH (publish =
'insert, update,delete');
CREATE PUBLICATION P_queue2_test FOR TABLE queue2 WITH (publish =
'insert, update,delete');
CREATE SUBSCRIPTION S_queue_test
 CONNECTION 'port=8888 user=postgres dbname=percona'
 PUBLICATION P_queue_test WITH (create_slot =true, copy_data =true);

ALTER SUBSCRIPTION S_queue_test SET PUBLICATION P_queue_test,
P_queue2_test REFRESH WITH (copy_data = true);
ALTER SUBSCRIPTION S_queue_test REFRESH PUBLICATION WITH (copy_data =
true);

©	2017	Percona22

Flow

©	2017	Percona23

Conflicts
▪ Any violation in constraints stops replication.
▪ UPDATE and DELETE operations on missing data will be skipped.
▪ Transaction can be omitted using
pg_replication_origin_advance(subscriber_name ,
position). aka sql_skip_counter.
▪ Current position can be seen at pg_replication_origin_status at

subscriber.

©	2017	Percona24

Replica	Identity
• Which identity is used for conflict resolution:

 REPLICA IDENTITY { DEFAULT | USING INDEX index_name |
FULL | NOTHING }

©	2017	Percona25

Monitoring
▪ Publisher:
select * from pg_replication_slots;

▪ Subscribers:
percona=# select pg_replication_origin_progress(r.r, true) FROM (select roname from
pg_replication_origin where roident = 1) r(r);
 pg_replication_origin_progress | 0/17024E0

postgres=# select * from pg_replication_origin;
 roident | roname
---------+----------
 1 | pg_16394

percona=# select * from pg_replication_origin_status ;
 local_id | external_id | remote_lsn | local_lsn
----------+-------------+------------+-----------
 1 | pg_16503 | 0/17024E0 | 0/16DEE30

©	2017	Percona26

Monitoring	—	cont.

▪ Subscribers:
select * from pg_stat_subscription where subname = 's_queue';" percona
-[RECORD 1]---------+------------------------------
subid | 16418
subname | s_queue
pid | 5293
relid |
received_lsn | 0/1678E98
last_msg_send_time | 2017-04-25 19:25:15.858439+00
last_msg_receipt_time | 2017-04-25 19:25:15.858475+00
latest_end_lsn | 0/1678E98
latest_end_time | 2017-04-25 19:25:15.858439+00

©	2017	Percona27

Minimum	configuration
wal_level = logical #minimal, replica, or logical
Max_wal_senders = 10
Wal_keep_segments # don’t use it if slots
Max_replication_slots =10
max_worker_processes = 8

#Subscribers
max_logical_replication_workers = 4 # taken from
max_worker_processes
max_sync_workers_per_subscription = 2 # taken from
max_logical_replication_workers

©	2017	Percona28

Related	functions	(decoding)
• pg_create_logical_replication_slot
• pg_drop_replication_slot

Consuming (get) /Seeing(peek) changes (will fail with pgoutput, but this
works with other logical decoding plugins):

• pg_logical_slot_peek_changes
• pg_logical_slot_get_changes
• pg_logical_slot_get_binary_changes
• pg_logical_slot_peek_binary_changes

©	2017	Percona29

Partitions	and	Logical	Replication

http://www.3manuek.com/postgres10logrepypart

©	2017	Percona30

pglogical
▪ Extension, providing similar capabilities as the future native implementation
▪ Additional flexibility, by allowing row filtering
▪ Manageable through functions
▪ It allows define Replication Sets
▪ Supports Synchronous commit
▪ Logical Decoding over WAL
▪ Stream is in commit order
▪ For versions over 9.4
▪ On subscriber it executes triggers as ENABLE REPLICA (basic

transformation).

https://github.com/2ndQuadrant/pglogical

©	2017	Percona31

BDR
▪ Bi-directional replication.
▪ Currently is a fork, intended to be an extension on 9.6
▪ Allows master-master replication up to 48 nodes (or more).
▪ Conflict detection
▪ Selective replication

https://www.2ndquadrant.com/en/resources/bdr/

©	2017	Percona32

RDS	test_decoding	support
▪ A basic and premature implementation is on RDS by using test_decoding
▪ Not much documented in RDS documentation, but functional.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.LogicalReplication

©	2017	Percona33

Reference	links
▪ Upcoming postgres 10 features by Robert Hass
▪ Logical Replication and Partitioning features by me
▪ First insights by Robert Hass
▪ RDS test_decoding support

http://rhaas.blogspot.com.ar/2017/04/new-features-coming-in-postgresql-10.html
http://www.3manuek.com/postgres10logrepypart
http://rhaas.blogspot.com.ar/2011/02/case-for-logical-replication.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport.LogicalReplication

©	2017	Percona34

Showcase
How	playing	with	LR	looks	like.

©	2017	Percona35

Cases
▪ Showcase LR conflict
▪ Showcase publication with many subscribers
▪ Bug?

https://asciinema.org/a/117603
https://asciinema.org/a/117604
https://asciinema.org/a/124146

©	2017	Percona36

Percona	Live	Europe	Call	for	Papers	is	Open!

September	25-27th,	2017	
Radisson	Blu	Royal	Hotel,	Dublin,	Ireland	
Focusing	on	Time	Series	Databases	
▪MySQL,	MongoDB,	Open	Source	Databases	
▪Business/Case	Studies,	Developers,	Operations	
▪Learn	from	and	Engage	with	Experts

Submit	Your	Proposal	by	July	17th!	
www.percona.com/live/e17

DATABASE PERFORMANCE
MATTERSDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	MattersDatabase	Performance	Matters

