

Comparing Highly Available Solutions With Percona
XtraDB Cluster and Percona Server with Group

ﬁ Illusa tFlercona

\\ PERCONA
!O) LIVEONLINE

About Me

* Open-source enthusiast
« MySQL tech lead

* Principal architect

« Working in the DB/development
world over 34 years (yes, | am that old)

« Open-source developer and community
contributor

What This Presentation Covers

... What is it about?
An overview of what HA and DR mean

How PXC and PS-GR cover the above needs

{]

® The most common issues
o

e |llustrate some differences

... What isn’t it about?
e We are not comparing performance
e We are not going into the deep tech mumbo jumbo (which is unusual for me!)

OVH Case

Lista Contatti Aperti
id_contatto Gruppo Creazione Stato
0000426620 ASSISTENZA TECNICA 30/03/2021 14:06:17 . CHIUSO
0000426357 ASSISTENZA TECNICA 22/03/2021 17:10:28 . CHIUSO
0000426360 ASSISTENZA TECNICA 22/03/2021 09:51:24 . CHIUSO
1000426359 ASSIS ENZA TECNICA 22/03/2021 09:46:49 . CHIUSO
|
. 0000424263 ASSI¢ 'ENZA TECNICA 20/11/2018 13:09:07 . CHIUSO
I think this case/picture will be in MANY slides for a long time! |

|

Unplanned Downtime

Unplanned downtime can be classified into downtime
caused by system faults, data and media errors, and site
outages.

System faults can occur in the system itself (CPU, memory,
or power supply), the software (operating system,
database, middleware, or application), peripherals, power,
or the network.

Data errors include human error by DBAs, system
administrators, users, and operators, as well as sabotage.
Media errors include disk failure and data corruption.

Site outages include natural disasters, power failure, and
sabotage.

The more you add to the stack, the more you increase the
chance of failures.

https://docs.oracle.com/cd/A91202_01/901_doc/rac.901/a89867/pshavdtl.htm#6062

I Unplenned Downtime I

|

System Data and .
Faults Media Errors Site Outages
||] Human Matural
System Emor Disastars
- DBA Power
CPU Ermor Failure
Systam
Memaory | Administrator Sabotage
Error
Power - User
Supply Error
— Softwame | OE}%?{
I Oparating — Sabotage
Seta =
L] Media
| Database Emors
| Middieware — ek
N L Data
L Application Corruption
— Peripherals
— Fower
“— Network

What is HA?

Availability %

Downtime per year

Downtime per month

Downtime per week

Downtime per day

99% ("two nines") 3.65 days 7.31 hours 1.68 hours 14.40 minutes
99.5% ("two nines five") 1.83 days 3.65 hours 50.40 minutes 7.20 minutes
99.9% ("three nines") 8.77 hours 43.83 minutes 10.08 minutes 1.44 minutes
99.95% ("three nines five") 4.38 hours 21.92 minutes 5.04 minutes 43.20 seconds

99.99% ("four nines")

52.60 minutes

4.38 minutes

1.01 minutes

8.64 seconds

99.995% ("four nines five")

26.30 minutes

2.19 minutes

30.24 seconds

4.32 seconds

99.999% ("five nines")

5.26 minutes

26.30 seconds

6.05 seconds

864.00 milliseconds

High Availability (HA) is a characteristic of a system, which aims to ensure an agreed level of

operational performance, usually uptime, for a higher than normal period.

What is HA?

* Geographic distribution in High
Availability is to cover service

availability in a location
o 10 Gb Ethernet best case scenario h 2 S
400 metre distance max s 15d V{g;zg;gfg:; o

(V]
4

§utisﬁ‘1‘ez Centrgél' -

bl | =<y, -
- i
FSint:Baafsabdij gt

> 1 ¥

‘\LAB—Rijscho"z’)l 7
s:Sint-Amandsberg

What is DR?

» Geographic distribution in s

Mancgester Berlin
Disaster Recovery is to ensure Liverpool 2
you can restore service, in a S
hically distributed location FEvia
geograpnically Longon &po.Station Gent Germany
o Real speed may vary R

Czechia Slovakia

o Linear distance ~1000Km wm ankfurt
Luxembourg

Paris Munich
® o

Budapest
®

Hungary

Austria

Slovenia | ®Zagreb

Switzerland

France -
Bosnia and

Croatia

MI<|) an Herzegovina <
=

1] @]

$ Sarajevo

\Cb
§ Mon‘ten
4 “Podgoric
S

Moaropuyy
Monaco Italv

The Datacentric Approach

/ \ Tightly coupled cluster

® Percona PXC

o MySQL-based with custom Galera (Codership)
implementation
® Percona Server

O Uses Group Replication

Both solutions use additional elements presented
in the distribution as:

1 Data State A

o MySQL Router

k / o ProxySQL

The distribute approach

Loosely coupled cluster
e In MySQL world is based on
Asynchronous replication

® Supported by PXC and PS with GR 3 Different
Data States

https://www.slideshare.net/marcotusa/best-practicehigh-
availabilitysolutiongeodistributedfinal

What Percona Implements (For MySQL)

We use three different solutions, bundled into two different Distributions

Percona Distribution for MySQL Download Options

Percona Distribution for MySQL offers two download options. One is based on Percona Server for MySQL and one is based on Percona XtraDB Cluster. Check out our recent
to learn more about the differences between group replication and Galera enabled replication.

Percona Server for MySQL Percona XtraDB Cluster

If you want a single server, source/replica, or high availability through) o .
o) If you want high-availability through Galera, Percona XtraDB Cluster is
group replication in your MySQL environment, Percona Server for MySQL))
S)) the right choice.
distribution is the right choice.

Percona Distribution for MySQL - PS Percona Distribution for MySQL - PXC

Single Primary vs Multi Primary

Single Primary . sclingreads

«— Local conflict resolution

WUlti Primary

. . Read) o , Read)
Write clients clients Write clients clients
= = = — Complicate distributed conflict
-l m || W P .D .D -D

) resolution

— No write scaling

1 ,_,
4 v o — No sharding
é wlw é é
N2 N3

LT

Cluster setup

PXC GR

Read
clients

)) Read
Write clients clients

i m ||
—

f@@@

-

Primary R/W Secondary R only

Number cannot over 9 nodes

Scaling READ only

No need to be odd number, but | don’t buy it

Write clients

N1

All W/R by default

Number must be odd for quorum calculation
Scaling READ only

More nodes more noise Linear increase

Birds-Eye VieWw: Failure Detection

O Node delay

= Saturation

= Malfunction

= Wrong dimensioning
O Network issue

= Network latency

= Network fluctuations

= And more

Birds-Eye VieWw: Failure Detection

O Node delay

Saturation
Malfunction

Wrong dimensioning

o0 Network issue

Network latency
Network fluctuations

And more

ViewlD =1
Node1
Node2

node3

Birds-Eye VieWw: Failure Detection

O Node delay

Saturation
Malfunction

Wrong dimensioning

o0 Network issue

Network latency
Network fluctuations

And more

./8\\

AN
1"_ -)

D

ViewlD =1
Node1
Node2
node3

ViewlD =1
Node1
Node2
node3

Birds-Eye VieWw: Failure Detection

/B\ ViewlD =1

\ Node1

O Node delay > Node2
) node3
= Saturation —

= Malfunction

= Wrong dimensioning /B\ ViewlD = 1

o Network issue [\ Node1

‘ Node2
= Network latency 0 node3
/ .
s Network fluctuations ~

= And more /8\
f . ViewlD =2
| Node1
@ ' Node2
o S

@

e PXC

O Odd number of nodes
o0 Use of quorum and views
m Use of weight
o Node either in Primary Component or not
able to serve

Dangerous Options:

® pc.ignore_sb (ignore splt-brain)

® pc.ignore_quorum (ignore quorum
calculation)

Birds-Eye VieW: Failure Detection
Split-brain

Group base on number of nodes and views
Weight is for Primary election not for quorum
calculation
Group quorum is base on majority of nodes
In case of expulsion a node can be:

s ABORT_SERVER

= OFFLINE_MODE

= READ_ONLY

(exit_state_action)

group_replication_force_members

For both the crucial component is the view and the existing members

Transaction - the Apply flow

PXC % e ‘
node 1

node 2 node 3
begin

statement

statement ...
g = commit
o
(&)
- .
S5 replicate |
w
a0
(&)
K=
S [ety)
g it finalized [
% ¢ {commit finalized} [begn) | certify)

apply _
begin

commit finalized
apply

commit finalized

Transaction - the Apply flow

Group Replication

Consensus
Member 1 — execute ——— certify —— binlog — commit — >
Member 2 ‘ - certify —— relaylog — apply —— binlog —— commit —»

Member 3 certify —— relaylog — apply —— binlog —— commit —>

Birds-Eye View: Flow Control

e Working against writeset pending in the receive queue
o No flow control
O Writeset caching (joiner — Donor)
= gcs.recv_q_hard_limit Maximum write-set cache size (in bytes).
= gcs.max_throttle Smallest fraction to the normal replication rate the node
can tolerate in the cluster.
= gcs.recv_g_soft_limit Estimate of the average replication rate for the node
o Catching up (Joined) Rate limited to what the joiner can apply
O Cluster sync
= gcs.fc_limit Used to determine the point where Flow Control engages.
= gcs.fc_factor Used to determine the point where Flow Control disengages.

N

y

A

\\k‘
2]
2

JOINER)
-

/.- —-
(PRIMARY\\

_

~

JOINED

~

/

%L{
AN

p

OPEN

Birds-Eye View: Flow Control in Group Replication

Definitely more complicated and

analytical, it analyzes things such as:

The certifier queue size

The replication applier queue size

The total number of transactions certified
The total number of remote transactions
applied in the member

The total number of local transactions

Variables

group_replication flow control applier threshold
group_replication flow control certifier threshold
group_replication flow control member quota percent

group_ replication flow control hold percent
group_ replication flow control release percent

group_replication flow control max commit quota
group_replication flow control min quota
group_replication flow control min recovery quota

group_ replication flow control mode
group_replication_ flow_control period

Bird-Eye View: Message Fragmentation

e PXC:

O For Load data 10K limit (configurable)
O Streaming replication (by Session)

wsrep_trx_fragment_unit
wsrep_trx_fragment_size

GR:

o

Supported from 8.0.16
All nodes must be able to support it
Managed at global level
s group_replication_communication_max_messag
e_size
Message delivery is complete when all nodes have
the whole message
Node joining can recover message fragments from
before it joins. Or it will be expelled

Data Consistency

What am | looking for?

The platform validate the consistency of each tuple that is replicated on each node, preventing any possible local
deviation.

By inheritance data is the same on each node and cannot deviate.

e Two problems

1. None of them provide a 100% data consistency guarantee

2. PXCrecently implement Inconsistent voting
3.

Both come with Defaults that also allow stale read (inconsistent data in read operations)

PXC: GR:
Set wsrep_on=0; Set sql_bin_log=0;

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

Data consistency: error during transactions

PXC use Cluster Error Voting

Writeset >
D10 r

-

GR is based on the local conflict error

8 00

Data consistency: error during transactions

PXC use Cluster Error Voting

| SET wsReP_ON=0 |

st e

GR is based on the local conflict error

8 00

Data consistency: error during transactions

PXC use Cluster Error Voting

8 0O
o000

ID 11
12
13
14

/

«\h--/

GR is based on the local conflict error

8 80

Data consistency: error during transactions

PXC use Cluster Error Voting

| SET WSREP_ON=1 |

sbe

GR is based on the local conflict error

8 00

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

8 0800 8 00

Data consistency: error during transactions

PXC use Cluster Error Voting

8 0800
5.0 O

<

VOTE

GR is based on the local conflict error

8 80

Data consistency: error during transactions

PXC use Cluster Error Voting

8 0800
@ X (o]

G

VOTE

GR is based on the local conflict error

8 80

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

5686 566
) X (& 000

Writeset -
— ID 10
_/\

VOTE

Data consistency: error during transactions

PXC use Cluster Error Voting

8 80
@ X (&

<

VOTE

GR is based on the local conflict error

8 80

[saL_BIN_LOoG=0 |

sde

Data consistency

PXC use Cluster Error Voting

8 00
@ X (&

<

VOTE

. error during transactions

GR is based on the local conflict error

Data consistency: error during transactions

PXC use Cluster Error Voting

8 80
@ X (&

<

VOTE

GR is based on the local conflict error

8 80

[saL_BIN_LoG=1 |

sde

Data consistency: error during transactions

PXC use Cluster Error Voting

8 80
@ X (&

<

VOTE

GR is based on the local conflict error

8 80

88 C

Data consistency: error during transactions

PXC use Cluster Error Voting

8 80
@ X (&

<

VOTE

GR is based on the local conflict error

8 80
O X O

Data Consistency: stale Reads

For full consistency change:
® PXC-> wsrep sync wait # 0 (ie:3)
® GR - group_replication_consistency # EVENTUAL (ie: AFTER)

stale read % on total Cost in execution Time

GR-EVENTUAL GR-AFTER

GR-AFTER

DDL

e PXC
o TOl
n Cluster unavailable for writes
o RSU
s Node temporary unavailable
= May end up in different data by node
o No online DDL
o Not possible to kill DDL running
o Significant history of issues due to DDL/locking/rollback
o Manual RSU (https://www.percona.com/blog/2019/03/25/how-to-perform-compatible-schema-changes-in-percona-

xtradb-cluster-advanced-alternative/)
o Compatible VS incompatible changes
s PT-OnlineSchemaChange

https://jira.percona.com/browse/PXC-3645

DDL

Standard alter

(Alter | Write) Read)

Online DDL clients || clients || clients

Compatible vs incompatible El;] ;[;l ED
changes A [
= PT- o v

OnlineSchemaChange é 6 6
N1 N2 N3
1))
Phasei[Aterlacaly axecuted on N1]Phasez
Writes allowed and distributed to other
\ nodes

https://bugs.mysql.com/103421

Read)
clients

'
=
l_.l

(" Alter ([Write
clients || clients

s || B

N1 N2 N3

1)

-

aller is completed on N1 but not returned.
Broadcast to the ather nodes. Mata lock is
\ssued on table. No further write is allowed.

(" Alter [Write Read)
clients || clients || clients

Ey=- EP

s

/

__Bin

Phase3

v N
59
N1 N2 N3

[

J

Aker complete on all nodes is also
committed in the BinLog for asynchronous
replication. Metalock raised. Write can start
again.

https://bugs.mysql.com/103421

HA Setup

PXC

Active site

a) &

v
& @
v
o

APROXY

.ﬁ

GR

Active site
=y
v
& S
v
o #

HAPROXY

ST
_—

DR Claims

Both claim they can work on WAN natively
Both then remark you need a very good network.
O A bit of contradiction here
| add you need to have the DCs too close to be a real DR
O Check out my previous presentation for Percona Live Europe about this

Long story short: DR cannot use Synchronous replication

DR Case

e The problem:

O Given Sync replication is not recommended, how we can keep the DR site up to date safely with
Asynchronous replication?

{ N Simple \ / R Simple \
B Asynchronous 5 Asynchronous

replication replication

PS 8.0.22 Group lication \ , PS 8.0.22 Group lication
cluster DC2 _ cluster DC2
—— Async €=--_f_ Asyn
Replication &Dh&mon -
PS 8.0.22 Group replication PS 8.0.22 Group replication ' \
cluster DC1 cluster DC1

_ o

DR Solutions

e PXC

O Basic Asynchronous replication
O Async using Automatic failover is possible, but has few
problems
= No primary identification
s No automatic fancing (like Read Only)
O Only decent manager is PXC Replication Manager from
Yves Trudeau
s Deal with failover on Source and Replica
s Allow to set order with weight
s Allow multiple DCs

DR Solutions

e PXC

O Basic Asynchronous replication

o Async using Automatic failover is possible, but has few | reﬁ:i;ﬁ:‘;g‘;";g&:‘:’m \
problems fail at first issue
= No primary identification S >
= No automatic fancing (like Read Only) o
O Only decent manager is PXC Replication Manager from a.ﬁﬁ%;fion replication clustat
Yves Trudeau P 802 F°£?$'§§a
s Deal with failover on Source and Replica K

P pDc2 |
[[
= Allow to set order with weight > /
s Allow multiple DCs

DR Solutions

e PXC
O Basic Asynchronous replication
o Async using Automatic failover is possible, but has few
problems
= No primary identification
s No automatic fancing (like Read Only)
O Only decent manager is PXC Replication Manager from

Yves Trudeau
s Deal with failover on Source and Replica
s Allow to set order with weight
s Allow multiple DCs

Asynchronous replication \
with auto fail-over will

survive SOURCE crashes.

@ P| " ~--_. aync Butwill not be able to

Auto-failover survive REPLICA fails

‘ ’ g
5 MySQL 8.0.22 Group

replication cluster
"~ Async ‘
. Auto-failover, .

PXC 8.0.22 Async
Cluster Auto-failover ~

L/

I .. L5 DC2
| -

DR Solutions

e PXC
O Basic Asynchronous replication
o Async using Automatic failover is possible, but has few
problems
s No primary identification
s No automatic fancing (like Read Only)
O Only decent manager is PXC Replication Manager from

Yves Trudeau
s Deal with failover on Source and Replica
s Allow to set order with weight
s Allow multiple DCs

N

PXC 8.0.22 S
Cluster .
‘Async
Auto-failover _

- Async

Async \
Auto-failover

Basic Asynchronous \
replication with PXC

Replication Manager, will
survive failure on Source

Auto-failover as on Replica

\ MySQL 8.0.22 Group
\ replication cluster

DR Solutions

e GR

O Async using Automatic failover
s Primary identification by GR
» All replicas are fenced (Read
Only)
s Add light weight tools as
grFailOver for full coverage

DR Solutions

e GR

O Async using Automatic failover
s Primary identification by GR
» All replicas are fenced (Read
Only)
s Add light weight tools as
grFailOver for full coverage

Shared table in mysal schema

replication_asynchronous_connection 7faiover

‘ decl_to_dc2
dcl_to_dc2

‘ dcl_to_dc2

GR_nodel
GR_node2

GR_node3

3306 100
3306 80
3306 50

\

PS 8.0.22 Group replication

&

Async
Replication'

cluster DC1

Asynchronous replication with
automatic fail-over

PS 8.0.22 Group
cluster DC2

DR Solutions

e GR

Shared table in mysgl schema
replication_asynchronous_connection_failover

O Async using Automatic failover

= Primary identification by GR | deitod2 | GR nodet [3306| 100
dcl_to_dc2 GR_node2 | 3306 80
dcl_to_dc2 GR_node3 | 3306 50

Asynchronous replication with

= All replicas are fenced (Read | automatic fail-over

Only)
s Add light weight tools as
grFailOver for full coverage

lication” =~ =
PS 8.0.22 Group replication Replicatio

cluster DC1

DR Solutions
e GR _

. . . replication_asynchronous_connection_failover
O Async using Automatic failover

= Primary identification by GR deisod2 | GRnmodel |3306 | 100 | A7
A dcl_to_dc2 GR_node2 | 3306 80
» All replicas are fenced (Read @

dcl_to_dc2 GR_node3 | 3306 50
Only)

>
= Add light weight tools as - @
grFailOver for full coverage @
\ Async

Replication

Asynchronous replication with \
automatic fail-over

PS 8.0.22 Group replication
cluster DC2

PS 8.0.22 Group replication
cluster DC1

Shared table in mysal schema
replication_asynchronous_connection_failover
\

dc2_to_dcl GR_noded | 3306 100
dc2_to_dcl GR_node5 | 3306 80
dc2_to_dcl GR_nodeé | 3306 50

DR Solutions

e GR

O Async using Automatic failover
s Primary identification by GR
» All replicas are fenced (Read
Only)
s Add light weight tools as
grFailOver for full coverage

Shared table in mysal schema
replication_a s_connection_failover
dei_to_dc2 GR_nodel | 3206 \
‘ det to de2 GR node2 | 3306 Asynchronous replication with
N - automatic fail-over
‘ del_to_de2 GR_nod=3 | 3306

PS 8.0.22 Group
cluster DC2

PS8.0.22G licati Asyne
.0. roup replication inati
cluster DC1 Replication
\ Shared table in mysal schema
replication_asynchronous_connection_failover.
dc2_to_dcl GR_noded4 | 2305 100 s
dc2_to_dc1 GR_node5 | 3306 80 (=3 J"

(S

grfailover

dc2_to_dc1 GR_nodeé | 3306 50

Adoption

PXC

® is around ~13 years now

o Pros
s Widely used as HA solution
s Significant history of debugging issues
m Very strong and consolidated knowledge
o Cons
» Galera (Codership) development moving to be more bound to MariaDB
e |E: MariaDB GTID ; NBO/Black Box Enterprise only feature
s Code is shared as tar
s No visibility on the git repo
e More difficult for others to interact and optimize the code

Adoption
GR

® Pros
o Core function for MySQL/Oracle
o Use well known elements like GTID and binlog
o Knowledge is ramping up quickly (Percona training)
O Code is available in github
e Cons
o Relatively new
s “Hello word” in 2014
m First version really production ready was 8.0.20)
o Limited adoption (well also PXC was not used until we start to...)

o We all require more large scale deployments to be able to catch/fix deviations

Monitoring - PMM

e PXC
O Extensive dashboards covering many different aspects of the cluster

PXC/Galera Cluster Summary MySQL_HA | PXC | Percona

PXC/Galera Node Summary MySQL_HA |[PXC |Percona

PXC/Galera Nodes Compare MySQL_HA | Percona

e GR

o New dashboard with a lot of initial information
o Working on extending it with more advanced insights

MySQL Group Replication Summary MySQL_HA | Percona

Conclusions

In Percona we support both PXC and PS with Group Replication

As architecture components the two solutions are very similar

GR is more articulated in DDL execution and Flow Control

Consistency like avoid stale read has less impact in PXC

The set of tooling that comes with MySQL Shell is not available with PXC

In my opinion, in the future we will see the use of GR growing a lot, but we need to
work on packaging it better, especially on automating it and more in-depth monitoring
The more adoption we will see for GR, the better the product will become due the
feedback

PXC is still a strong HA solution, and it is still playing a key role in design strong High
Available architectures

Tapadhleat Koszonom yp ..o

Grazu
Shicya BUZHVU WaadMahadsarFllfllhlzay ana"k i= G[HZ'B
ThintKg” - =g= | = Takk:= g2 ‘“MBSIChukranBKutus

WtE
Blagodarai = X| |g|]2|aku1u“fﬁ.?&“?!“m;u;r»;«;
l:l: A
Dhanyzbaad

Matondo === ‘%:

Talku = cu S M Tanemlrl “u

v '_Glandmeme e “”

Smm Dyl

T—F ==
1 = %Graluas m‘:‘m = _I_ak

[:
Gramesm ‘92 CS 3 GratlasAgom —

= o D v CLD i
Faleminderit "= " ‘=°=_ -=’_gf:g;;g e~ = == KopKhunkha
Hhanstﬂ — = A sahHamnlda = —

CoxSagll

= Mar haba N
Nlrrmgrazzlak Bayarlalaa .= "ﬁymmg MU"U"IBS[}

Any quesﬂons”

You can find me at:

e Marco.tusa@percona.com
e (@marcotusa

