

Comparing Highly Available Solutions With Percona
XtraDB Cluster and Percona Server with Group
ReplicationMarco Tusa, Percona

3

• Open-source enthusiast

• MySQL tech lead

• Principal architect

• Working in the DB/development 

world over 34 years (yes, I am that old)

• Open-source developer and community

contributor

About Me

4

What This Presentation Covers
… What is it about?

● An overview of what HA and DR mean

● The most common issues

● How PXC and PS-GR cover the above needs

● Illustrate some differences

… What isn’t it about?

● We are not comparing performance

● We are not going into the deep tech mumbo jumbo (which is unusual for me!)

5

OVH Case

I think this case/picture will be in MANY slides for a long time!

6

● Unplanned downtime can be classified into downtime
caused by system faults, data and media errors, and site
outages.

● System faults can occur in the system itself (CPU, memory,
or power supply), the software (operating system,
database, middleware, or application), peripherals, power,
or the network.

● Data errors include human error by DBAs, system
administrators, users, and operators, as well as sabotage.

● Media errors include disk failure and data corruption.

● Site outages include natural disasters, power failure, and

sabotage.

The more you add to the stack, the more you increase the
chance of failures.

Unplanned Downtime

https://docs.oracle.com/cd/A91202_01/901_doc/rac.901/a89867/pshavdtl.htm#6062

7

What is HA?
Availability % Downtime per year Downtime per month Downtime per week Downtime per day

99% ("two nines") 3.65 days 7.31 hours 1.68 hours 14.40 minutes

99.5% ("two nines five") 1.83 days 3.65 hours 50.40 minutes 7.20 minutes

99.9% ("three nines") 8.77 hours 43.83 minutes 10.08 minutes 1.44 minutes

99.95% ("three nines five") 4.38 hours 21.92 minutes 5.04 minutes 43.20 seconds

99.99% ("four nines") 52.60 minutes 4.38 minutes 1.01 minutes 8.64 seconds

99.995% ("four nines five") 26.30 minutes 2.19 minutes 30.24 seconds 4.32 seconds

99.999% ("five nines") 5.26 minutes 26.30 seconds 6.05 seconds 864.00 milliseconds

High Availability (HA) is a characteristic of a system, which aims to ensure an agreed level of
operational performance, usually uptime, for a higher than normal period.

• Geographic distribution in High
Availability is to cover service
availability in a location

o 10 Gb Ethernet best case scenario 

400 metre distance max

What is HA?

• Geographic distribution in
Disaster Recovery is to ensure
you can restore service, in a
geographically distributed location

o Real speed may vary

o Linear distance ~1000Km

What is DR?

10

The Datacentric Approach

Tightly coupled cluster

● Percona PXC

○ MySQL-based with custom Galera (Codership)
implementation

● Percona Server

○ Uses Group Replication

Both solutions use additional elements presented
in the distribution as:

○ HAProxy

○ MySQL Router

○ ProxySQL

1 Data State

11

The distribute approach

Loosely coupled cluster

● In MySQL world is based on

Asynchronous replication

● Supported by PXC and PS with GR

https://www.slideshare.net/marcotusa/best-practicehigh-
availabilitysolutiongeodistributedfinal

12

What Percona Implements (For MySQL)
We use three different solutions, bundled into two different Distributions

13

Single Primary vs Multi Primary

← Scaling reads

← Local conflict resolution

→ Complicate distributed conflict
resolution

→ No write scaling

→ No sharding

14

Cluster setup

● All W/R by default

● Number must be odd for quorum calculation

● Scaling READ only

● More nodes more noise Linear increase

● Primary R/W Secondary R only

● Number cannot over 9 nodes

● Scaling READ only

● No need to be odd number, but I don’t buy it

GRPXC

15

Birds-Eye View: Failure Detection

○ Node delay

■ Saturation

■ Malfunction

■ Wrong dimensioning

○ Network issue

■ Network latency

■ Network fluctuations

■ And more

15

Birds-Eye View: Failure Detection

○ Node delay

■ Saturation

■ Malfunction

■ Wrong dimensioning

○ Network issue

■ Network latency

■ Network fluctuations

■ And more

15

Birds-Eye View: Failure Detection

○ Node delay

■ Saturation

■ Malfunction

■ Wrong dimensioning

○ Network issue

■ Network latency

■ Network fluctuations

■ And more

15

Birds-Eye View: Failure Detection

○ Node delay

■ Saturation

■ Malfunction

■ Wrong dimensioning

○ Network issue

■ Network latency

■ Network fluctuations

■ And more

16

Split-brain

● PXC

○ Odd number of nodes

○ Use of quorum and views

■ Use of weight

○ Node either in Primary Component or not

able to serve

Dangerous Options:

● pc.ignore_sb (ignore splt-brain)

● pc.ignore_quorum (ignore quorum

calculation)

● GR

○ Group base on number of nodes and views

○ Weight is for Primary election not for quorum

calculation

○ Group quorum is base on majority of nodes

○ In case of expulsion a node can be:

■ ABORT_SERVER

■ OFFLINE_MODE

■ READ_ONLY

(exit_state_action)

○ group_replication_force_members

For both the crucial component is the view and the existing members

Birds-Eye View: Failure Detection

17

Transaction - the Apply flow

PXC

18

Transaction - the Apply flow
Group Replication

19

● Working against writeset pending in the receive queue

○ No flow control

○ Writeset caching (joiner – Donor)

■ gcs.recv_q_hard_limit Maximum write-set cache size (in bytes).

■ gcs.max_throttle Smallest fraction to the normal replication rate the node

can tolerate in the cluster.

■ gcs.recv_q_soft_limit Estimate of the average replication rate for the node.

○ Catching up (Joined) Rate limited to what the joiner can apply

○ Cluster sync

■ gcs.fc_limit Used to determine the point where Flow Control engages.

■ gcs.fc_factor Used to determine the point where Flow Control disengages.

Birds-Eye View: Flow Control

20

Birds-Eye View: Flow Control in Group Replication

Definitely more complicated and
analytical, it analyzes things such as:

● The certifier queue size

● The replication applier queue size

● The total number of transactions certified

● The total number of remote transactions

applied in the member

● The total number of local transactions

Variables

group_replication_flow_control_applier_threshold

group_replication_flow_control_certifier_threshold

group_replication_flow_control_member_quota_percent

group_replication_flow_control_hold_percent

group_replication_flow_control_release_percent

group_replication_flow_control_max_commit_quota

group_replication_flow_control_min_quota

group_replication_flow_control_min_recovery_quota

group_replication_flow_control_mode

group_replication_flow_control_period

21

Bird-Eye View: Message Fragmentation

● PXC:

○ For Load data 10K limit (configurable)

○ Streaming replication (by Session)

■ wsrep_trx_fragment_unit

■ wsrep_trx_fragment_size

● GR:

○ Supported from 8.0.16

○ All nodes must be able to support it

○ Managed at global level

■ group_replication_communication_max_messag
e_size

○ Message delivery is complete when all nodes have
the whole message

○ Node joining can recover message fragments from
before it joins. Or it will be expelled

22

Data Consistency
What am I looking for?

The platform validate the consistency of each tuple that is replicated on each node, preventing any possible local
deviation.

By inheritance data is the same on each node and cannot deviate.

● Two problems

1. None of them provide a 100% data consistency guarantee

2. PXC recently implement Inconsistent voting

3. Both come with Defaults that also allow stale read (inconsistent data in read operations)

PXC:

Set wsrep_on=0;

GR:

Set sql_bin_log=0;

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

23

Data consistency: error during transactions

PXC use Cluster Error Voting GR is based on the local conflict error

24

Data Consistency: Stale Reads

For full consistency change:

● PXC ! wsrep_sync_wait ≠ 0 (ie:3)

● GR ! group_replication_consistency ≠ EVENTUAL (ie: AFTER)

25

DDL
● PXC

○ TOI

■ Cluster unavailable for writes

○ RSU

■ Node temporary unavailable

■ May end up in different data by node

○ No online DDL

○ Not possible to kill DDL running

○ Significant history of issues due to DDL/locking/rollback

○ Manual RSU (https://www.percona.com/blog/2019/03/25/how-to-perform-compatible-schema-changes-in-percona-

xtradb-cluster-advanced-alternative/)

○ Compatible VS incompatible changes

■ PT-OnlineSchemaChange

https://jira.percona.com/browse/PXC-3645

26

DDL
● GR

○ Standard alter

○ Online DDL

○ Compatible vs incompatible

changes

■ PT-

OnlineSchemaChange

https://bugs.mysql.com/103421

https://bugs.mysql.com/103421

27

HA Setup
PXC GR

28

DR Claims
● Both claim they can work on WAN natively

● Both then remark you need a very good network.

○ A bit of contradiction here

● I add you need to have the DCs too close to be a real DR

○ Check out my previous presentation for Percona Live Europe about this

● Long story short: DR cannot use Synchronous replication

29

DR Case
● The problem:

○ Given Sync replication is not recommended, how we can keep the DR site up to date safely with
Asynchronous replication?

30

DR Solutions
● PXC

○ Basic Asynchronous replication

○ Async using Automatic failover is possible, but has few

problems

■ No primary identification

■ No automatic fancing (like Read Only)

○ Only decent manager is PXC Replication Manager from
Yves Trudeau

■ Deal with failover on Source and Replica

■ Allow to set order with weight

■ Allow multiple DCs

30

DR Solutions
● PXC

○ Basic Asynchronous replication

○ Async using Automatic failover is possible, but has few

problems

■ No primary identification

■ No automatic fancing (like Read Only)

○ Only decent manager is PXC Replication Manager from
Yves Trudeau

■ Deal with failover on Source and Replica

■ Allow to set order with weight

■ Allow multiple DCs

30

DR Solutions
● PXC

○ Basic Asynchronous replication

○ Async using Automatic failover is possible, but has few

problems

■ No primary identification

■ No automatic fancing (like Read Only)

○ Only decent manager is PXC Replication Manager from
Yves Trudeau

■ Deal with failover on Source and Replica

■ Allow to set order with weight

■ Allow multiple DCs

30

DR Solutions
● PXC

○ Basic Asynchronous replication

○ Async using Automatic failover is possible, but has few

problems

■ No primary identification

■ No automatic fancing (like Read Only)

○ Only decent manager is PXC Replication Manager from
Yves Trudeau

■ Deal with failover on Source and Replica

■ Allow to set order with weight

■ Allow multiple DCs

31

DR Solutions
● GR

○ Async using Automatic failover

■ Primary identification by GR

■ All replicas are fenced (Read

Only)

■ Add light weight tools as

grFailOver for full coverage

31

DR Solutions
● GR

○ Async using Automatic failover

■ Primary identification by GR

■ All replicas are fenced (Read

Only)

■ Add light weight tools as

grFailOver for full coverage

31

DR Solutions
● GR

○ Async using Automatic failover

■ Primary identification by GR

■ All replicas are fenced (Read

Only)

■ Add light weight tools as

grFailOver for full coverage

31

DR Solutions
● GR

○ Async using Automatic failover

■ Primary identification by GR

■ All replicas are fenced (Read

Only)

■ Add light weight tools as

grFailOver for full coverage

31

DR Solutions
● GR

○ Async using Automatic failover

■ Primary identification by GR

■ All replicas are fenced (Read

Only)

■ Add light weight tools as

grFailOver for full coverage

32

Adoption
PXC

● is around ~13 years now

○ Pros

■ Widely used as HA solution

■ Significant history of debugging issues

■ Very strong and consolidated knowledge

○ Cons

■ Galera (Codership) development moving to be more bound to MariaDB

● IE: MariaDB GTID ; NBO/Black Box Enterprise only feature

■ Code is shared as tar

■ No visibility on the git repo

● More difficult for others to interact and optimize the code

33

Adoption
GR

● Pros

○ Core function for MySQL/Oracle

○ Use well known elements like GTID and binlog

○ Knowledge is ramping up quickly (Percona training)

○ Code is available in github

● Cons

○ Relatively new

■ “Hello word” in 2014

■ First version really production ready was 8.0.20)

○ Limited adoption (well also PXC was not used until we start to…)

○ We all require more large scale deployments to be able to catch/fix deviations

34

Monitoring - PMM
● PXC

○ Extensive dashboards covering many different aspects of the cluster

● GR

○ New dashboard with a lot of initial information

○ Working on extending it with more advanced insights

35

Conclusions
● In Percona we support both PXC and PS with Group Replication

● As architecture components the two solutions are very similar

● GR is more articulated in DDL execution and Flow Control

● Consistency like avoid stale read has less impact in PXC

● The set of tooling that comes with MySQL Shell is not available with PXC

● In my opinion, in the future we will see the use of GR growing a lot, but we need to

work on packaging it better, especially on automating it and more in-depth monitoring

● The more adoption we will see for GR, the better the product will become due the

feedback

● PXC is still a strong HA solution, and it is still playing a key role in design strong High

Available architectures

36

Any questions?
You can find me at:

● Marco.tusa@percona.com

● @marcotusa

