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Beyond Relational Databases: MongoDB, Redis & 
ClickHouse
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Introduction

MySQL everyone?



© 2019 Percona3

Introduction

Redis? Memcached?
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Image credits: 451 Research (https://451research.com/state-of-the-database-landscape)
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Agenda

▪ Introduction
▪Why not Relational Databases?
▪Redis: Key-Value
▪MongoDB: Document
▪ClickHouse: Columnar
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Why not Relational Databases?
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Why not Relational Databases?

▪General purpose but not optimal for all purposes 
▪ Impedance mismatch with developers
▪ACID/locking induced latency
▪Storage architecture not optimal for big data
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Agenda
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Redis highlights

▪Fast… very fast.
▪Mature / large community
▪Many data structures 
▪Advanced features
▪Horizontally scalable / built-in HA (Sentinel / Cluster)
▪BSD license / Commercial licenses available
▪Client libraries for about every programming language
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Redis data types

▪ Lists
▪Sets
▪Sorted sets
▪Hashes
▪Bitmaps
▪Geohash
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Redis good use cases

▪ Lots of data
▪High concurrency
▪Massive small-data intake
▪Simple data access patterns
▪Session Cache / Full page cache
▪Counters / Leaderboards
▪Queues
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Redis bad Use Cases

▪Durability and consistency
▪Complex data access patterns
▪Non-PK access
▪Security concerns
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▪ Fast
▪ Highly scalable/available
▪ Simple access patterns
▪ Advanced data types
▪ Advanced features for KV store

Atomic operations
▪ Ubiquitous / large community

▪ Lower durability
▪ Limited access patterns
▪ Lack of security
▪ No secondary keys
▪ Cache invalidation is hard

PROs                                    CONs
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Agenda
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MongoDB Flexible Schema
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MongoDB Flexible Schema
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MongoDB Flexible Schema

▪Embedded in blogpost document (natural case)
▪Embedded in user document (bad idea)
▪Denormalize and keep duplicate data (VERY bad idea)
▪Apply normalization and user lookup() (JOIN equivalent)
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Document Stores: Flexible Schema
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Document Stores: Flexible Schema
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MongoDB highlights

▪ Sharding and replication for dummies!
▪ Flexible schema
▪ Multi-document transactions (new in 4.0)
▪ Pluggable storage engines for distinct workloads.
▪ Excellent compression options with PerconaFT, RocksDB, WiredTiger
▪ On disk encryption (Enterprise Advanced)
▪ Connectors for all major programming languages
▪ Sharding and replica aware connectors
▪ Geospatial functions
▪ Aggregation framework
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MongoDB good use cases

▪Catalogs
▪Analytics/BI (BI Connector on 3.2)
▪Time series
▪Metadata repositories
▪Prototype Development
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MongoDB bad use cases

▪Recursiveness
▪Multiple views of the data 
▪Developer comfort
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▪ Fast
▪ Easy sharding
▪ Simple access patterns
▪ Rich feature set 
▪ Async connectors
▪ Flexible schema

▪ Inefficiency for JOINs
▪ Still immature internally
▪ Attribute names bloat space
▪ MMAP db-level locking

PROs                                    CONs
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Agenda
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Row-oriented Column-oriented

Columnar Data Layout

001:10,Smith,Joe,40000;

002:12,Jones,Mary,50000;

003:11,Johnson,Cathy,44000;

004:22,Jones,Bob,55000;

...

10:001,12:002,11:003,22:004;

Smith:001,Jones:002,Johnson:003,Jones:004;

Joe:001,Mary:002,Cathy:003,Bob:004;

40000:001,50000:002,44000:003,55000:004;

...
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Columnar Data Layout

Row-oriented Read Approach

What we want to read

Read Operation

Memory Page

1 2

3

4

10 Smith Bob 40000

12 Jones Mary 50000

11 Johnson Cathy 44000



Columnar Data Layout

What we want to read
Read Operation

Memory Page

1 2

3

4

10 12 11 22

Smith Jones Johnson

Joe Mary Cathy Bob

Column-oriented Read Approach
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ClickHouse: columnar store

woot!
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ClickHouse highlights
▪True column oriented
▪Compression
▪Disk based (not in-memory)
▪Parallelized
▪Distributed
▪SQL querying; 
• Improved JOINs in latter versions
▪Vector engine
▪Real-time updates
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ClickHouse highlights
▪ Indexes
▪Dictionaries
▪Online queries
▪On-disk GROUP BYs
▪Approximated calculations
▪Replication 
▪Few, but popular connectors
▪Support for Tableau
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ClickHouse limitations
▪Non-standard SQL 
▪UPDATE/DELETE is a bulk operation (ALTER … UPDATE)
▪No windowing functions 
▪No transactions or constraints
▪Eventual consistency
▪Time data types have no milliseconds
▪No implicit type conversions
▪ Impossible to do table partitioning (except by month)
▪ Lack of enterprise operation tools
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ClickHouse good use cases
▪Suitable for read-mostly or read-intensive, large data repositories
▪Full table / large range reads.
▪Time series data
▪Unstructured problems where “good” indexes are hard to forecast
▪ Log analysis
▪Re-creatable datasets
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ClickHouse bad use cases
▪Not good for “SELECT *” queries or queries fetching most of the columns
▪Not good for "small"  writes; Good for bulk writes
▪Not good for mixed read/write; Focus on large reads and large inserts
▪Bad for unstructured data 
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▪VERY fast
▪Distributed
▪Compression
▪Primary-keys
▪On-disk GROUP BY

▪Non-standard SQL
▪Few connectors
▪Driven mostly by Yandex needs
▪No partitioning

PROs                                CONs



© 2019 Percona40

I'm Redis My name is 
Mongo

They call me 
ClickHouse

Who 
invited 
these???
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Database Performance MattersDatabase Performance MattersDatabase Performance MattersDatabase Performance MattersChampions of Unbiased 
Open Source Database Solutions


