
© 2019 Percona1

Marcos Albe - Principal Support Engineer @
Percona

Beyond Relational Databases: MongoDB, Redis &
ClickHouse

© 2019 Percona2

Introduction

MySQL everyone?

© 2019 Percona3

Introduction

Redis? Memcached?

© 2019 Percona4
Image credits: 451 Research (https://451research.com/state-of-the-database-landscape)

© 2019 Percona5

Agenda

▪ Introduction
▪Why not Relational Databases?
▪Redis: Key-Value
▪MongoDB: Document
▪ClickHouse: Columnar

© 2019 Percona6

Why not Relational Databases?

© 2019 Percona7

Why not Relational Databases?

▪General purpose but not optimal for all purposes
▪ Impedance mismatch with developers
▪ACID/locking induced latency
▪Storage architecture not optimal for big data

© 2019 Percona8

Agenda

▪ Introduction
▪Why not Relational Databases?
▪Redis: Key-Value
▪MongoDB: Document
▪ClickHouse: Columnar

© 2019 Percona9

© 2019 Percona10

© 2019 Percona11

Redis highlights

▪Fast… very fast.
▪Mature / large community
▪Many data structures
▪Advanced features
▪Horizontally scalable / built-in HA (Sentinel / Cluster)
▪BSD license / Commercial licenses available
▪Client libraries for about every programming language

© 2019 Percona12

Redis data types

▪ Lists
▪Sets
▪Sorted sets
▪Hashes
▪Bitmaps
▪Geohash

© 2019 Percona13

Redis good use cases

▪ Lots of data
▪High concurrency
▪Massive small-data intake
▪Simple data access patterns
▪Session Cache / Full page cache
▪Counters / Leaderboards
▪Queues

© 2019 Percona14

Redis bad Use Cases

▪Durability and consistency
▪Complex data access patterns
▪Non-PK access
▪Security concerns

© 2019 Percona15

▪ Fast
▪ Highly scalable/available
▪ Simple access patterns
▪ Advanced data types
▪ Advanced features for KV store

Atomic operations
▪ Ubiquitous / large community

▪ Lower durability
▪ Limited access patterns
▪ Lack of security
▪ No secondary keys
▪ Cache invalidation is hard

PROs CONs

© 2019 Percona16

Agenda

▪ Introduction
▪Why not Relational Databases?
▪Redis: Key-Value
▪MongoDB: Document
▪ClickHouse: Columnar

© 2019 Percona17

© 2019 Percona18

MongoDB Flexible Schema

© 2019 Percona19

MongoDB Flexible Schema

© 2019 Percona20

MongoDB Flexible Schema

▪Embedded in blogpost document (natural case)
▪Embedded in user document (bad idea)
▪Denormalize and keep duplicate data (VERY bad idea)
▪Apply normalization and user lookup() (JOIN equivalent)

© 2019 Percona21

© 2019 Percona22

Document Stores: Flexible Schema

© 2019 Percona23

Document Stores: Flexible Schema

© 2019 Percona24

MongoDB highlights

▪ Sharding and replication for dummies!
▪ Flexible schema
▪ Multi-document transactions (new in 4.0)
▪ Pluggable storage engines for distinct workloads.
▪ Excellent compression options with PerconaFT, RocksDB, WiredTiger
▪ On disk encryption (Enterprise Advanced)
▪ Connectors for all major programming languages
▪ Sharding and replica aware connectors
▪ Geospatial functions
▪ Aggregation framework

© 2019 Percona25

MongoDB good use cases

▪Catalogs
▪Analytics/BI (BI Connector on 3.2)
▪Time series
▪Metadata repositories
▪Prototype Development

© 2019 Percona26

MongoDB bad use cases

▪Recursiveness
▪Multiple views of the data
▪Developer comfort

© 2019 Percona27

▪ Fast
▪ Easy sharding
▪ Simple access patterns
▪ Rich feature set
▪ Async connectors
▪ Flexible schema

▪ Inefficiency for JOINs
▪ Still immature internally
▪ Attribute names bloat space
▪ MMAP db-level locking

PROs CONs

© 2019 Percona28

Agenda

▪ Introduction
▪Why not Relational Databases?
▪Redis: Key-Value
▪MongoDB: Document
▪ClickHouse: Columnar

© 2019 Percona29 © 2019 Percona

© 2019 Percona30

Row-oriented Column-oriented

Columnar Data Layout

001:10,Smith,Joe,40000;

002:12,Jones,Mary,50000;

003:11,Johnson,Cathy,44000;

004:22,Jones,Bob,55000;

...

10:001,12:002,11:003,22:004;

Smith:001,Jones:002,Johnson:003,Jones:004;

Joe:001,Mary:002,Cathy:003,Bob:004;

40000:001,50000:002,44000:003,55000:004;

...

© 2019 Percona

Columnar Data Layout

Row-oriented Read Approach

What we want to read

Read Operation

Memory Page

1 2

3

4

10 Smith Bob 40000

12 Jones Mary 50000

11 Johnson Cathy 44000

Columnar Data Layout

What we want to read
Read Operation

Memory Page

1 2

3

4

10 12 11 22

Smith Jones Johnson

Joe Mary Cathy Bob

Column-oriented Read Approach

© 2019 Percona33

ClickHouse: columnar store

woot!

© 2019 Percona34

ClickHouse highlights
▪True column oriented
▪Compression
▪Disk based (not in-memory)
▪Parallelized
▪Distributed
▪SQL querying;
• Improved JOINs in latter versions
▪Vector engine
▪Real-time updates

© 2019 Percona35

ClickHouse highlights
▪ Indexes
▪Dictionaries
▪Online queries
▪On-disk GROUP BYs
▪Approximated calculations
▪Replication
▪Few, but popular connectors
▪Support for Tableau

© 2019 Percona36

ClickHouse limitations
▪Non-standard SQL
▪UPDATE/DELETE is a bulk operation (ALTER … UPDATE)
▪No windowing functions
▪No transactions or constraints
▪Eventual consistency
▪Time data types have no milliseconds
▪No implicit type conversions
▪ Impossible to do table partitioning (except by month)
▪ Lack of enterprise operation tools

© 2019 Percona37

ClickHouse good use cases
▪Suitable for read-mostly or read-intensive, large data repositories
▪Full table / large range reads.
▪Time series data
▪Unstructured problems where “good” indexes are hard to forecast
▪ Log analysis
▪Re-creatable datasets

© 2019 Percona38

ClickHouse bad use cases
▪Not good for “SELECT *” queries or queries fetching most of the columns
▪Not good for "small" writes; Good for bulk writes
▪Not good for mixed read/write; Focus on large reads and large inserts
▪Bad for unstructured data

© 2019 Percona39

▪VERY fast
▪Distributed
▪Compression
▪Primary-keys
▪On-disk GROUP BY

▪Non-standard SQL
▪Few connectors
▪Driven mostly by Yandex needs
▪No partitioning

PROs CONs

© 2019 Percona40

I'm Redis My name is
Mongo

They call me
ClickHouse

Who
invited
these???

DATABASE PERFORMANCE
MATTERS

Database Performance MattersDatabase Performance MattersDatabase Performance MattersDatabase Performance MattersChampions of Unbiased
Open Source Database Solutions

