

http://www.percona.com/training/

© 2011 - 2017 Percona, Inc. 1 / 25

OVERVIEW

© 2011 - 2017 Percona, Inc. 2 / 25

Introduction

- Security, security
- Clients in the PCI, HIPAA, PHI, PII space
- Similar rules and restrictions in other parts of the world
- Demand that data be encrypted "at rest"

© 2011 - 2017 Percona, Inc. 3 / 25

States of Data

- Data at Rest
 - Fuzzy definition.
 - Cold storage.
 - In database.
- Data in Use
 - Residing in memory
 - Accessible
- Data in Transit
 - Over the wire

© 2011 - 2017 Percona, Inc. 4 / 25

Linux Unified Key Setup (LUKS)

- Created by Clemens Fruhwirth in 2004
- Implemented using the linux device mapper (dm) layer
 - Abstracts any block device to software
- Can encrypt:
 - Removable media
 - RAIDs
 - LVMs
 - Physical, Logic and File-based disks

(*) https://en.wikipedia.org/wiki/Dm-crypt

© 2011 - 2017 Percona, Inc. 5 / 25

LUKS SETUP

© 2011 - 2017 Percona, Inc. 6 / 25

The Deep End!

- Example block device: /dev/sda4
- The key can be securely stored in a LastPass Secure Note or other secure vault.
- The key is not directly recoverable.
- WARNING! Loss of the key means complete loss of data! Be sure to have a backup of the key.
 - See above!
 - Make a backup of the block headers!

© 2011 - 2017 Percona, Inc. 7 / 25

Creating a passphrase

- Need something with high entropy
 - Lots of randomness

```
# openssl rand -base64 32
```

date I md5 I rev I head -c 24 I md5 I tail -c 32

© 2011 - 2017 Percona, Inc. 8 / 25

Creating an Encrypted Disk

- Format the disk
 - Unmount beforehand

```
# umount /var/lib/mysql
```

cryptsetup -c aes-xts-plain -v luksFormat /dev/sda4

WARNING!

=======

This will overwrite data on /dev/sda4 irrevocably.

Are you sure? (Type uppercase yes): YES

Enter passphrase: Verify passphrase:

Command successful.

© 2011 - 2017 Percona, Inc. 9 / 25

"Opening" the Disk

- After you provide a passphrase, you now need to "open" the encrypted disk
 - This becomes the device mapper name/alias.
- It can be anything, but for our purposes, we will call it "mysqldata."

cryptsetup luksOpen /dev/sda4 mysqldata Enter passphrase for /dev/sda4:

• On success, you should see the device show up:

Is /dev/mapper/

Irwxrwxrwx 1 root root 7 Nov 4 11:50 mysqldata -> ../dm-0

© 2011 - 2017 Percona, Inc.

Format a Filesystem

You can now format this encrypted block device and create a filesystem:

mkfs.ext4 /dev/mapper/mysqldata

You can now mount the encrypted block device you just formatted:

```
# mount /dev/mapper/mysqldata /var/lib/mysql

# df -h
...
/dev/mapper/mysqldata 26G 45M 25G 1% /var/lib/mysql
```

© 2011 - 2017 Percona, Inc. 11 / 25

Gotchas / Caveats

- Unfortunately, you cannot add this to /etc/fstab to automount since the key is needed.
- Do keep this in mind if your server ever reboots
 - MySQL will not start since the data directory is unavailable until opened and mounted.

© 2011 - 2017 Percona, Inc. 12 / 25

Make a Backup Now!

- The header of the block device contains information regarding the current encryption key(s).
- Should this ever get damaged, or if you need to recover because you forgot the new password, you can restore this header.

```
# cryptsetup luksHeaderBackup --header-backup-file \
${HOSTNAME}_`date +%Y%m%d`_header.dat /dev/sda4

# file node2_20170426_header.dat
node2_20170426_header.dat: LUKS encrypted file, ver 1
    [aes, xts-plain, sha256] UUID: 611391ee-c182-44ab-bbb4-f1ec76fd9fe1

# sha1sum ${HOSTNAME}_`date +%Y%m%d`_header.dat
4a48f2eaf1c65893d2d82681d393690d0a704e0a node2_20170426_header.dat
```

• GZip the header file. Store the SHA1 and the .gz file in a secure location.

© 2011 - 2017 Percona, Inc. 13 / 25

Unmounting and Closing a Disk

• If you know you will be storing a disk and want to make sure the contents are not currently visible (ie: mounted), you can unmount and "close" the encrypted device.

```
# systemctl stop mysql
# umount /var/lib/mysql
# cryptsetup luksClose mysqldata
```

• In order to mount this device again you will be required to "open" it and provide one of the keys.

© 2011 - 2017 Percona, Inc. 14 / 25

ROTATING KEYS

© 2011 - 2017 Percona, Inc. 15 / 25

Rotating Keys (Adding / Removing Keys)

- Various compliance and enforcement rules will dictate how often you need to rotate keys.
- You cannot rotate or change a key directly.
- LUKS supports up to 8 keys per device.
- You must first add a new key to any other slot and then remove the older key.

© 2011 - 2017 Percona, Inc. 16 / 25

Rotating Example

Take a look at the existing header information:

cryptsetup luksDump /dev/sda4

LUKS header information for /dev/sda4

Version: 1

Cipher name: aes

Cipher mode: cbc-essiv:sha256

Hash spec: sha1 Payload offset: 4096

MK bits: 256

MK digest: 81 37 51 6c d5 c8 32 f1 7a 2d 47 7c 83 62 70 d9 f7 ce 5a 6e

MK salt: ae 4b e8 09 c8 7a 5d 89 b0 f0 da 85 7e ce 7b 7f

47 c7 ed 51 c1 71 bb b5 77 18 0d 9d e2 95 98 bf

MK iterations: 44500

UUID: 92ed3e8e-a9ac-4e59-afc3-39cc7c63e7f6

Key Slot 0: ENABLED Iterations: 181059

Salt: 9c a9 f6 12 d2 a4 2a 3d a4 08 b2 32 b0 b4 20 3b 69 13 8d 36 99 47 42 9c d5 41 35 8c b3 d0 ff 0e

Key material offset: 8 AF stripes: 4000

Key Slot 1: DISABLED

Key Slot 2: DISABLED

Key Slot 3: DISABLED Key Slot 4: DISABLED

Key Slot 5: DISABLED

Key Slot 6: DISABLED

Key Slot 7: DISABLED

© 2011 - 2017 Percona, Inc. 17 / 25

Rotating Example (cont.)

- We can see a key is currently occupying 'Key Slot 0'.
- We can add a key to any DISABLED key slot.

cryptsetup luksAddKey --key-slot 1 -v /dev/sda4

Enter any passphrase: Key slot 0 unlocked.

Enter new passphrase for key slot: Verify passphrase: Command successful.

- LUKS will accept 'any' passphrase to authenticate us.
- Had there been other keys in other slots, we could have used any one of them.
 - As only one was currently saved, we had to use it.
 - We can then add a new passphrase for slot 1.

© 2011 - 2017 Percona, Inc. 18 / 25

Rotating Example (cont.)

Now that we have saved the new key in slot 1, we can remove the key in slot 0.

cryptsetup luksKillSlot /dev/sda4 0

Enter any remaining LUKS passphrase: No key available with this passphrase.

- In the example above, the existing password stored in slot 0 was used.
 - This is not allowed.
- You cannot provide the password for the same slot you are attempting to remove.

© 2011 - 2017 Percona, Inc.

Rotating Example (cont.)

Enter any remaining LUKS passphrase:

cryptsetup luksDump /dev/sda4

LUKS header information for /dev/sda4

Version: 1
Cipher name: aes
Cipher mode: cbc-essiv:sha256
Hash spec: sha1
Payload offset: 4096
MK bits: 256
MK digest: 81 37 51 6c d5 c8 32 f1 7a 2d 47 7c 83 62 70 d9 f7 ce 5a 6e
MK salt: ae 4b e8 09 c8 7a 5d 89 b0 f0 da 85 7e ce 7b 7f
47 c7 ed 51 c1 71 bb b5 77 18 0d 9d e2 95 98 bf

Key Slot 1: ENABLED Iterations: 229712

cryptsetup luksKillSlot /dev/sda4 0

Salt: 5d 71 b2 3a 58 d7 f8 6a 36 4f 32 d1 23 1a df df cd 2b 68 ee 18 f7 90 cf 58 32 37 b9 02 e1 42 d6

UUID: 92ed3e8e-a9ac-4e59-afc3-39cc7c63e7f6

Key material offset: 264

MK iterations: 44500

Key Slot 0: DISABLED

AF stripes: 4000 Key Slot 2: DISABLED Key Slot 3: DISABLED Key Slot 4: DISABLED Key Slot 5: DISABLED Key Slot 6: DISABLED

Key Slot 7: DISABLED

© 2011 - 2017 Percona, Inc.

ALTERNATIVES

© 2011 - 2017 Percona, Inc. 21 / 25

InnoDB Tablespace Encryption

- MySQL 5.7 InnoDB
 - CREATE TABLE t1 (c1 INT) ENCRYPTION='Y';
 - ALTER TABLE foo ENCRYPTION = 'Y'
 - Doesn't cover encryption for bin-logs, slow-logs, and other places your data may be exposed.
 - As a side note, encryption on these other parts is currently work-in-progress.

© 2011 - 2017 Percona, Inc. 22 / 25

MySQL Encryption Functions

```
CREATE TABLE `foo` (`secrets` varbinary(512));

INSERT INTO foo VALUES (AES_ENCRYPT('{"glossary": {"title": "example glossary", "GlossDiv": {"title": "S", "GlossList": {"GlossEntry": {"ID": "SGML", "SortAs": "SGML", "GML", "MADIVE SUCH AS DOCBOOK.", "GMLSSSEEAISO": ["GML", "XML"]}, "GML", "MAL"]}, "GML", "MAL"], "MAL"]}, "GML", "MAL"], "MAL", "MAL"], "MAL"], "MAL", "MAL"], "MAL"], "MAL"], "MAL"], "MAL", "MAL"], "MAL"], "MAL", "MAL"], "MAL", "MAL"], "MAL", "MAL"], "MAL"
```

(*) https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html

© 2011 - 2017 Percona, Inc.

Final Notes

- After you rotate passwords, it's a good idea to repeat the header dump steps we performed above and store the new passwords in your password vault.
- Make sure all MySQL config values point to this partition.
- Check AES hardware acceleration
 - cat /proc/cpuinfo | grep -i aes
 - modprobe aesni-intel
- Use SSL with MySQL 5.7
 - Certificates created automatically
 - At minimum, distribute ca.pem to client applications

© 2011 - 2017 Percona, Inc. 24 / 25

Questions? Thanks for Attending!

© 2011 - 2017 Percona, Inc. 25 / 25