facebook

Managing MySQL at Scale

Pradeep Nayak & Junyi (Luke) Lu

Production Engineers - MySQL Infra

Agenda

- 1 Terminology
- 2 Lifecycle of a MySQL instance
- 3 How do we migrate MySQL instance
- 4 How do we migrate shard
- 5 Balancing
- 6 Testing Infrastructure for automations

Terminology

Terminology

What's a instance?

What's a shard?

What's a replicaset?

Instance

foobar.prn:3307

foobar.prn:3309

foobar.prn:3306

Shard

db.helloworld

db.12345

db.44365

Replicaset

Service Discovery

Shard ID	Replicaset	Master	Slave
0-99	Replicaset 1	db1234.prn1:3306	db1234.frc1:3306
100-199	Replicaset 2	db4567.ftw1:3306	db4567.prn1:3307
200-299	Replicaset 3	db1234.atn1:3306	db1234.frc2:3308

Service Discovery

Shard ID	Replicaset	Master	Slave
0-99	Replicaset 1	db1234.prn1:3306	db1234.frc1:3306
100-199	Replicaset 2	db4567.ftw1:3306	db1234.prn1:3309
200-299	Replicaset 3	db1234.frc2:3308	db1234.atn1:3309

- . States are production, spare, spare allocated, spare deallocated, reimage, drained
- . Metadata includes instance properties like name, port, mysql rpm version, state etc
- . A mysql shard hosts metadata of all instances in the fleet

- . Each state has its own processor to do the work
- . Each state has a queue where work is queued
- . Runs constantly scanning the fleet

Instance Migration

Clone an instance

Use case of cloning a production MySQL instance

- Replace a broken instance/host
- Move data around for maintenance
- Balancing host utilization

MPS Copy

A workflow system that manages the requests for cloning MySQL instances

- spare allocation
- set up MySQL config
- copy data
- replication
- validation
- bring it online & remove the old instance if necessary

MPS Copy - Allocation

Choose the best slot for the instance based on its footprint

- Disk usage
- CPU utilization
- Failure domain

MPS Copy - Setup

Turn up an empty instance using the right configuration

- Install the right RPM version
- Bootstrap the correct directory
- Generate the right my.cnf based on its use case
- Make sure the empty instance is connectable

MPS Copy - Data Migration

We support three different ways of cloning a production instance

- Physical copy: xtrabackup and myrocks_hotbackup
- Logical copy:
 - mysqldump
 - Restore from backup

MPS Copy - Replication

- Setup replication
 - From current production master
 - From Binlog Server
- Catchup

MPS Copy - Validation

If the data migration is a logical one, we will use snapshot based checksum to verify the correctness of data by comparing to its current master

MPS Copy - Service Registration

Register the new instance in our service discovery system so that the MySQL users will be able to notice this new instance that has been recently turned up

Online Shard Migration

Online Shard Migration

Another fundamental piece of our infra to control the growth of each MySQL instance

- Instance can grow beyond the host level limit
 - Too big
 - Too hot

Online Shard Migration (OLM)

Key concept: Move the data of a shard into other smaller/cooler instance through logical migration and register the new address into the service discovery system

OLM

OLM

mysql.replicaset.1

mysql.replicaset.2

Shard	Replicaset
db.1	mysql.replicaset.2
db.2	mysql.replicaset.1
db.3	mysql.replicaset.3

OLM Processor

Workflow management for massive OLM operations

- Conflict solver
- Picking the best destination replicaset
- Kickoff the actual move
- Proper retry and cleanup

Balancing

Balancing

Find the right place for the workload in order to achieve maximum sustainable resource utilization

Total: 1000G

Free: 100G

RS1: 400G

Host 2 Free: 500G

Host 3 Free: 500G

RS1: 400G

Free: 100G

RS1: 400G

Free: 200G

RS2: 300G

Host 3 Free: 500G

RS2: 300G

Free: 100G

RS1: 400G

Free: 100G

RS3: 100G

RS2: 300G

Host 3

Free: 500G

RS3: 100G

Poor Stacking

Free: 100G

RS1: 400G

Free: 100G

RS3: 100G

RS2: 300G

Free: 300G

RS4: 200G

RS4: 200G

Proper Stacking

RS3: 100G

RS1: 400G

Free: 200G

RS2: 300G

Host 3

Free: 500G

RS3: 100G

Proper Stacking

RS3: 100G

RS1: 400G

RS4: 200G

RS2: 300G

Host 3 Free: 500G

RS4: 200G

Carve the Shape

Total: 1000G

Poor Shape

Free: 100G

RS1: 400G

Free: 100G

RS3: 200G

RS2: 200G

Free: 300G

RS4: 200G

Carve the Shape

Total: 1000G

Rebalancer

Goal: Find the best slot for hosting the given workload profile and reduce the imbalance score across the fleet to be minimum

Rebalancer - Challenges

Multiple balancing factors

- CPU/Memory/Disk usage
- Fault domain spreading
- MySQL vs LBU anti affinity

Testing Infrastructure

Testing Infra for Automations

- Lots of Automation code handling critical components of Infra
- . UnitTests are good but mock backend connection
- . Need to test end to end

Testing Infra Goals

- . build and canary packages based on the change
- . provide signals at diff time for developer
- . production like setup, but isolated environment
- . iterate quickly with confidence

Q&A

facebook