

Managing MySQL at Scale

Pradeep Nayak & Junyi (Luke) Lu
Production Engineers - MySQL Infra

Agenda
1 Terminology

2 Lifecycle of a MySQL instance

3 How do we migrate MySQL instance

4 How do we migrate shard

5 Balancing

6 Testing Infrastructure for automations

Terminology

What’s a instance ?
What’s a shard ?
What’s a replicaset ?

Terminology

foobar.prn:3307
foobar.prn:3309
foobar.prn:3306

Instance

3306

3307

3309

foobar.prn

db.helloworld
db.12345
db.44365

Shard

Replicaset
WWW Service

Discovery

Replicaset 1
(0-99)

Replicaset 2
(100-199)

Replicaset 3
(200-299)

 M1

 S1

 M2

 S2

 M3

 S3

Shard ID Replicaset Master Slave

0-99 Replicaset 1 db1234.prn1:3306 db1234.frc1:3306

100-199 Replicaset 2 db4567.ftw1:3306

200-299 Replicaset 3

db4567.prn1:3307

db1234.atn1:3306 db1234.frc2:3308

Service Discovery

Shard ID Replicaset Master Slave

0-99 Replicaset 1 db1234.prn1:3306 db1234.frc1:3306

100-199 Replicaset 2 db4567.ftw1:3306

200-299 Replicaset 3 db1234.frc2:3308

db1234.prn1:3309

db1234.atn1:3309

Service Discovery

db.helloworld

mysql.replicaset.12345

host123.prn host245.ftw host567.frc

33093306 33063307 33063309

db.foobarshard

replicaset

instance

host

mysql.replicaset.6789

Lifecycle of an instance

● States are production, spare, spare allocated, spare
deallocated, reimage, drained

● Metadata includes instance properties like name,
port, mysql rpm version, state etc

● A mysql shard hosts metadata of all instances in the
fleet

Lifecycle of an instance

Lifecycle of an instance
reimage

productiondrained

spare allocatedspare deallocated

spare
pre-prod checks success

prod checks fail

undrain

copy success

copy success

copy failed

pre-prod checks success
allocated for copy

copy success

● Each state has its own processor to do the work
● Each state has a queue where work is queued
● Runs constantly scanning the fleet

Lifecycle of an instance

Instance Migration

Use case of cloning a production MySQL instance
- Replace a broken instance/host
- Move data around for maintenance
- Balancing host utilization

Clone an instance

A workflow system that manages the requests for cloning
MySQL instances

● spare allocation
● set up MySQL config
● copy data
● replication
● validation
● bring it online & remove the old instance if necessary

MPS Copy

Choose the best slot for the instance based on its footprint
● Disk usage
● CPU utilization
● Failure domain

MPS Copy - Allocation

Allocation Setup Migration Replication Validation Registeration

Turn up an empty instance using the right configuration
- Install the right RPM version
- Bootstrap the correct directory
- Generate the right my.cnf based on its use case
- Make sure the empty instance is connectable

MPS Copy - Setup

Allocation Setup Migration Replication Validation Registeration

We support three different ways of cloning a production
instance
● Physical copy: xtrabackup and myrocks_hotbackup
● Logical copy:

○ mysqldump
○ Restore from backup

MPS Copy - Data Migration

Allocation Setup Migration Replication Validation Registeration

● Setup replication
○ From current production master
○ From Binlog Server

● Catchup

MPS Copy - Replication

Allocation Setup Migration Replication Validation Registeration

If the data migration is a logical one, we will use snapshot
based checksum to verify the correctness of data by
comparing to its current master

MPS Copy - Validation

Allocation Setup Migration Replication Validation Registeration

Register the new instance in our service discovery system so
that the MySQL users will be able to notice this new instance
that has been recently turned up

MPS Copy - Service Registration

Allocation Setup Migration Replication Validation Registeration

Online Shard Migration

Another fundamental piece of our infra to control the
growth of each MySQL instance
- Instance can grow beyond the host level limit
- Too big
- Too hot

Online Shard Migration

Key concept: Move the data of a shard into other
smaller/cooler instance through logical migration and
register the new address into the service discovery
system

Online Shard Migration (OLM)

db.1

mysql.replicaset.1234

host123.prn host245.ftw

3306 3306

shard

replicaset

instance

host

mysql.replicaset.5678

host345.prn host567.ftw

3307 3307

OLM

db.2 db.3

OLM

db.2 = 300G

db.1 = 100G

db.3 = 50G

mysql.replicaset.1

100G

table1.csv

table2.csv db.1
table3.csv

mysql.replicaset.2

Shard Replicaset

db.1 mysql.replicaset.1

db.2 mysql.replicaset.1

db.3 mysql.replicaset.3

mysql.replicaset.2

binlogs

Workflow management for massive OLM operations
- Conflict solver
- Picking the best destination replicaset
- Kickoff the actual move
- Proper retry and cleanup

OLM Processor

Balancing

Balancing
Find the right place for the workload in order to
achieve maximum sustainable resource utilization

Poor Stacking

RS1: 400G

RS2: 300G

RS4: 200G

RS3: 100G

Host: 500G

Total: 1000G

Host: 500G
Host: 500G

Host: 500G

Poor Stacking

Host 1
Free: 500G

Host 2
Free: 500G RS1: 400G

Host 3
Free: 500GRS1: 400G

Free: 100G

Poor Stacking

Host 1
Free: 500G

Host 2
Free: 500G

RS2: 300G

Host 3
Free: 500GRS1: 400G

Free: 100G

RS2: 300G

Free: 200G

Poor Stacking

Host 1
Free: 500G

Host 2
Free: 500G

Host 3
Free: 500GRS1: 400G

Free: 100G

RS2: 300G

Free: 200G
Free: 100G

RS3: 100G

RS3: 100G

Poor Stacking

Host 1
Free: 500G

Host 2
Free: 500G

Host 3
Free: 500GRS1: 400G

Free: 100G

RS2: 300G

Free: 200G
Free: 100G

RS4: 200G

RS3: 100G

RS4: 200G

Free: 300G

Proper Stacking

Host 1
Free: 500G

Host 2
Free: 500G

Host 3
Free: 500GRS1: 400G

Free: 100G

RS2: 300G

Free: 200G

RS3: 100G

RS3: 100G

Proper Stacking

Host 1
Free: 500G

Host 2
Free: 500G

Host 3
Free: 500GRS1: 400G

Free: 100G

RS2: 300G

Free: 200G

RS4: 200G

RS3: 100G
RS4: 200G

Carve the Shape

RS1: 400G

RS2: 200G RS3: 200G RS4: 200G

Total: 1000G

Host: 500G
Host: 500G

Host: 500G
Host: 500G

Host 3
Free: 500G

Poor Shape

Free: 100G

RS1: 400G

Free: 300G

RS2: 200G

Free: 300G

RS4: 200G

RS3: 200G

Free: 100G

X3

RS1: 400G

RS4: 200GRS3: 200GRS2: 200G

Carve the Shape

Total: 1000G

100G

100G

100G

100G

100G

100G

100G

100G

100G

100G

100G
RS1: 400G

RS2: 300G
RS3: 200G

RS4: 100G

Host: 500G
Host: 500G

Host: 500G
Host: 500G

Rebalancer
Goal: Find the best slot for hosting the given workload profile
and reduce the imbalance score across the fleet to be
minimum

Maintenance

Replace
Broken Host

Rebalancer Moves

Rebalancer - Challenges
Multiple balancing factors
- CPU/Memory/Disk usage
- Fault domain spreading
- MySQL vs LBU anti affinity

Testing Infrastructure

Testing Infra for Automations

● Lots of Automation code handling critical
components of Infra

● UnitTests are good but mock backend connection
● Need to test end to end

Testing Infra Goals

● build and canary packages based on the change
● provide signals at diff time for developer
● production like setup, but isolated environment
● iterate quickly with confidence

Run the
test code

Diff

Testing Infra
Service

metadata prod

snapshot

deallocate
&

refreshallocate/deallocate

trigger
test

test
signal

metadata
access

Virtual test
assets

deallocate

developer

Q&A

