
Oct-2-2019

Maintenance for MongoDB Replica Sets

{"name": "Igor Donchovski",

"lives_in": "Skopje",

"email": "donchovski@pythian.com",

"current_role": "Lead database consultant",

"education": [{"type": "College", "name": "FEIT", "graduated": "2008", "university": "UKIM"},

 {"type": "Master", "name": "FINKI", "graduated": "2013", "university": "UKIM"}],

"work": [{"role": "Web developer", "start": "2007", "end": "2012", "company": "Gord Systems"},

 {"role": "DBA", "start": "2012", "end": "2014", "company": "NOVP"},

 {"role": "Database consultant", "start": "2014", "end": "2016", "company": "Pythian"},

 {"role": "Lead database consultant", "start": "2016", "company": "Pythian"}],

"certificates": [{"name": "C100DBA", "issued": "2016", "description": "MongoDB certified DBA"}],

"social": [{"network": "LinkedIn", "link": "www.linkedin.com/in/igorle"},

 {"network": "Twitter", "link": "https://twitter.com/igorle", "handle": "@igorle"}],

"interests": ["Hiking", "Biking", "Traveling"],

"hobbies": ["Painting", "Photography", "Cooking"],

"proud_of": ["Volunteering", "Helping the Community"]}

About Me

© 2019 Pythian. Confidential

http://www.linkedin.com/in/igorle
https://twitter.com/igorle
https://twitter.com/igorle

• How MongoDB replication works

• Replica set configuration, deployment topologies

• Reconfiguring replica set members

• Hardware changes, OS patching

• Database upgrades, downgrades

• Building indexes

• Backups and restores

• QA

Overview

© 2019 Pythian. Confidential

Time

• Group of mongod processes that maintain the same data set

• Redundancy and high availability

• Increased read capacity (scaling reads)

• Automatic failover

Replica Set

Members # Nodes Required to Elect New Primary Fault Tolerance

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

© 2019 Pythian. Confidential

priority:1 votes:1

priority:1 votes:1 priority:1 votes:1

Replication Concept
1. Write operations go to the Primary node

2. All changes are recorded into operations log

3. Asynchronous replication to Secondary

4. Secondaries copy the Primary oplog

5. Secondary can use sync source Secondary*

*settings.chainingAllowed (true by default)

2. oplog

1.

3. 3.

4. 4.

5.

© 2019 Pythian. Confidential

Replica Set Oplog
• Special capped collection that keeps a rolling record of all operations that

modify the data stored in the databases

• Idempotent

• Default oplog size

For Unix and Windows systems
Storage Engine Default Oplog Size Lower Bound Upper Bound

In-memory 5% of physical memory 50MB 50GB

WiredTiger 5% of free disk space 990MB 50GB

MMAPv1 5% of free disk space 990MB 50GB

© 2019 Pythian. Confidential

VPC

Deploy Replica Set

© 2019 Pythian. Confidential

• Start each member with the appropriate options
mongod --config /etc/mongod.conf

• Initiate the replica set on one node
rs.initiate()

• Confirm the replica set configuration
rs.conf()

• Add the rest of the members
rs.add()

• Confirm the replica has Primary node
rs.status()

Node 2

Node 3

Node 1

VPC

mongod.conf

© 2019 Pythian. Confidential

storage:

 dbPath: /var/lib/mongo

replication:

 oplogSizeMB: 10240

 replSetName: "rs_test"

net:

 port: 27017

 ssl:

 mode: requireSSL

 PEMKeyFile: /etc/ssl/mongodb.pem

 CAFile: /etc/ssl/ca.pem

systemLog:

 destination: file

 path: "/logs/mongodb.log"

security:

 keyFile: "/path/key/rs.key"

 authorization: "enabled"

Node 2

Node 3

Node 1

VPC

Deploy Replica Set

© 2019 Pythian. Confidential

• Start each member with the appropriate options
mongod --config /etc/mongod.conf

• Initiate the replica set on one node
rs.initiate()

• Confirm the replica set configuration
rs.conf()

• Add the rest of the members
rs.add()

• Confirm the replica has Primary node
rs.status()

rs.initiate()

Node 2

Node 3

Node 1

VPC

Deploy Replica Set

© 2019 Pythian. Confidential

• Start each member with the appropriate options
mongod --config /etc/mongod.conf

• Initiate the replica set on one node
rs.initiate()

• Confirm the replica set configuration
rs.conf()

• Add the rest of the members
rs.add()

• Confirm the replica has Primary node
rs.status()

Primaryrs.conf()

Node 2

Node 3

rs.conf()
{

 "_id" : "rs_test",

 "version" : 1,

 "protocolVersion" : NumberLong(1),

 "members" : [

 {"_id" : 0,

 "host" : "node1.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

 "priority" : 1,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1

],

"settings" : { ………….. --->

© 2019 Pythian. Confidential

 "settings" : {

 "chainingAllowed" : true,

 "heartbeatIntervalMillis" : 2000,

 "heartbeatTimeoutSecs" : 10,

 "electionTimeoutMillis" : 10000,

 "catchUpTimeoutMillis" : -1,

 "getLastErrorModes" : {

 },

 "getLastErrorDefaults" : {

 "w" : 1,

 "wtimeout" : 0

 },

 "replicaSetId" : ObjectId("585ab9df685f726db2c6a840")

 }

}

VPC

Deploy Replica Set

© 2019 Pythian. Confidential

• Start each member with the appropriate options
mongod --config /etc/mongod.conf

• Initiate the replica set on one node
rs.initiate()

• Confirm the replica set configuration
rs.conf()

• Add the rest of the members from the Primary
rs.add()

• Confirm the replica has Primary node
rs.status()

Primaryrs.add({host:"nodeX:27017"})

Node 2

Node 3

VPC
• Start each member with the appropriate options

mongod --config /etc/mongod.conf

• Initiate the replica set on one node
rs.initiate()

• Confirm the replica set configuration
rs.conf()

• Add the rest of the members
rs.add()

• Confirm the replica has Primary node
rs.status()

Deploy Replica Set

© 2019 Pythian. Confidential

Secondary

Secondary

Primary

Configuration Options
• 50 members per replica set (7 voting members)

• Arbiter node

• Priority 0 node

• Hidden node

• Delayed node

© 2019 Pythian. Confidential

• Does not hold copy of data

• Votes in elections

rs.addArb("arbiter.net:27017")

Arbiter Node

hidden : true

Arbiter

© 2019 Pythian. Confidential

Priority 0 Node
Priority - floating point (i.e. decimal) number between 0 and 1000

• Cannot become primary, cannot trigger election

• Visible to application (accepts reads/writes)

• Votes in elections

rs.add({ host: "mongodb5.net:27017", priority: 0 })

Secondary
priority : 0

© 2019 Pythian. Confidential

Hidden Node
• Not visible to application

• Never becomes primary, but can vote in elections

• Use cases (reporting, backups)

rs.add({ host: "mongodb5.net:27017", priority: 0, hidden: true })

hidden : true
 hidden: true priority:0

Secondary
hidden : true priority : 0

© 2019 Pythian. Confidential

Delayed Node
• Must be priority 0 member

• Should be hidden member (not mandatory)

• Mainly used for backups (historical snapshot of data)

• Recovery in case of human error

rs.add({ host: "mongodb5.net:27017", priority: 0, hidden: true, slaveDelay=3600 })

Secondary
slaveDelay : 3600
priority : 0
hidden : true

© 2019 Pythian. Confidential

© 2019 Pythian. Confidential

Maintenance

It’s highly recommended that you
test your changes in pre-production
before applying on a running
production environment

Increase Oplog Size

• Connect to each replica set member

• Change the oplog size of the replica set member (size in MB)

MongoDB >= 3.6: db.adminCommand({replSetResizeOplog: 1, size: 32768})

• Confirm the size of the oplog

use local

db.oplog.rs.stats()

• Update mongod.conf file with new value (oplogSizeMB: 32768)

© 2019 Pythian. Confidential

Replica maintenance
Includes changes for priority, hidden,

slaveDelay, tags

● Save rs.conf() to a variable

> cfg = rs.conf()

• Print out the cfg variable in your shell

> cfg

© 2019 Pythian. Confidential

cfg=rs.conf()
{

 "_id" : "rs_test",

 "version" : 1,

 "protocolVersion" : NumberLong(1),

 "members" : [

 {"_id" : 0,

 "host" : "node1.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

 "priority" : 1,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1

 },

© 2019 Pythian. Confidential

 {"_id" : 1,

 "host" : "node2.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

"priority" : 1,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1

 },

 {"_id" : 2,

 "host" : "node3.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

 "priority" : 1,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1 }],

 "settings" : {

 "chainingAllowed" : true,

 "heartbeatIntervalMillis" : 2000,

 "heartbeatTimeoutSecs" : 10,

 "electionTimeoutMillis" : 10000,

 "catchUpTimeoutMillis" : -1,

 "getLastErrorModes" : {

 },

 "getLastErrorDefaults" : {

 "w" : 1,

 "wtimeout" : 0

 },

 "replicaSetId" :
ObjectId("585ab9df685f726db2c6a840")

 }

}

Replica maintenance
● Change the necessary settings for the

desired nodes

> cfg.members[0].priority = 0.5

> cfg.members[1].priority = 2

> cfg.members[2].priority = 0

> cfg.members[2].hidden = true

> cfg.members[2].slaveDelay = 3600

> cfg.settings.electionTimeoutMillis = 12000

© 2019 Pythian. Confidential

Replica maintenance
● Confirm the changes, print the variable cfg

in your shell again

> cfg

● All changes look good?

● Assign the configuration to the replica set

> rs.reconfig(cfg)

© 2019 Pythian. Confidential

priority:2

priority:0.5slaveDelay : 3600
priority : 0
hidden : true

rs.conf()
{

 "_id" : "rs_test",

 "version" : 1,

 "protocolVersion" : NumberLong(1),

 "members" : [

 {"_id" : 0,

 "host" : "node1.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

 "priority" : 0.5,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1

 },

© 2019 Pythian. Confidential

 {"_id" : 1,

 "host" : "node2.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : false,

"priority" : 2,

 "tags" : {},

 "slaveDelay" : NumberLong(0),

 "votes" : 1

 },

 {"_id" : 2,

 "host" : "node3.net:27017",

 "arbiterOnly" : false,

 "buildIndexes" : true,

 "hidden" : true,

 "priority" : 0,

 "tags" : {},

 "slaveDelay" : 3600,

 "votes" : 1 }],

 "settings" : {

 "chainingAllowed" : true,

 "heartbeatIntervalMillis" : 2000,

 "heartbeatTimeoutSecs" : 10,

 "electionTimeoutMillis" : 12000,

 "catchUpTimeoutMillis" : -1,

 "getLastErrorModes" : {

 },

 "getLastErrorDefaults" : {

 "w" : 1,

 "wtimeout" : 0

 },

 "replicaSetId" :
ObjectId("585ab9df685f726db2c6a840")

 }

}

How read operations are routed to replica set members

1. primary (by default)

2. primaryPreferred

3. secondary

4. secondaryPreferred

5. nearest (least network latency)

MongoDB 3.4 maxStalenessSeconds (>= 90 seconds)

Read preference

© 2019 Pythian. Confidential

Read preference

© 2019 Pythian. Confidential

Tag sets
{

 "_id" : "rs_test",

 "version" : 1,

 "protocolVersion" : NumberLong(1),

 "members" : [

 { "_id" : 0, "host" : "mongodb0.net:27017", ..., "tags": { }, ... },

 { "_id" : 1, "host" : "mongodb1.net:27017", ..., "tags": { }, ... },

 { "_id" : 2, "host" : "mongodb2.net:27017", ..., "tags": { }, ... }

],

 "settings" : {

 ...

 } …

}

© 2019 Pythian. Confidential

cfg = rs.conf();

conf.members[0].tags = { "dc": "europe", "usage": "production" };

conf.members[1].tags = { "dc": "europe", "usage": "reporting" };

conf.members[2].tags = { "dc": "north_america", "usage": "production" };

conf.members[3].tags = { "dc": "north_america", "usage": "reporting" };

conf.members[4].tags = { "dc": "africa", "usage": "production" };

conf.members[5].tags = { "dc": "africa", "usage": "reporting" };

conf.members[6].tags = { "dc": "apac", "usage": "reporting" };

rs.reconfig(cfg);

db.foo.find({}).readPref("secondary", [{ "dc": "europe", "usage": "production" }, {}])

db.foo.find({}).readPref("secondary", [{ "dc": "africa"}, { "usage": "reporting" }, {}])

db.foo.find({}).readPref("secondary", [{ "dc": "apac", "usage": "production" }])

Tag sets

© 2019 Pythian. Confidential

Tag sets
cfg = rs.conf();

conf.members[0].tags = { "dc": "europe", "usage": "production" };

conf.members[1].tags = { "dc": "europe", "usage": "reporting" };

conf.members[2].tags = { "dc": "north_america", "usage": "production" };

conf.members[3].tags = { "dc": "north_america", "usage": "reporting" };

conf.members[4].tags = { "dc": "africa", "usage": "production" };

conf.members[5].tags = { "dc": "africa", "usage": "reporting" };

conf.members[6].tags = { "dc": "apac", "usage": "reporting" };

rs.reconfig(cfg);

db.foo.find({}).readPref("secondary", [{ "dc": "europe", "usage": "production" }, {}])

db.foo.find({}).readPref("secondary", [{ "dc": "africa"}, { "usage": "reporting" }, {}])

db.foo.find({}).readPref("secondary", [{ "dc": "apac", "usage": "production" }]) <-- Error

© 2019 Pythian. Confidential

Resync Replica member
• Stop mongod process on the stale node

• Remove everything from the --dbPath directory

• Start mongod process

• Wait initial sync to finish automatically
(This procedure can be used to change storage engines)

Alternative

• Copy the data files from a Secondary that is

locked for writes --db.fsyncLock()

• Sync the stale node

© 2019 Pythian. Confidential

Hardware/OS upgrades

32GB RAM, 8 CPU

32GB RAM, 8 CPU 32GB RAM, 8 CPU

© 2019 Pythian. Confidential

Disk: 300GB

Disk: 300GB Disk: 300GB

• Increase CPU

• Increase DISK

• Increase RAM

• Network changes

• OS patches

• OS upgrade

• Oplog (MongoDB < 3.6)

• More

Hardware/OS upgrades

© 2019 Pythian. Confidential

• Always start with Secondary nodes (hidden, delayed, priority:0)

• Confirm your replication window

> rs.printReplicationInfo()

> rs.printSlaveReplicationInfo()

• Understand how long your Secondaries can be "offline" if you need to

stop mongod process

• Finish the maintenance on Secondaries one by one

• Wait Secondaries to sync with Primary

Hardware/OS upgrades

32GB RAM, 8 CPU

64GB RAM, 8 CPU 64GB RAM, 8 CPU

© 2019 Pythian. Confidential

Disk: 300GB

Disk: 1TB Disk: 1TB

Hardware/OS upgrades

© 2019 Pythian. Confidential

• Step down the Primary

> rs.stepDown(60)

• Confirm new Primary has

been elected

• Do the same changes on the

former Primary

32GB RAM, 8 CPU

64GB RAM, 8 CPU 64GB RAM, 8 CPU

Disk: 300GB

Disk: 1TB Disk: 1TB

● Replica set major version upgrade (4.0 > 4.2)

● All nodes must be running version 4.0

● Study the compatibility changes with the new

version, confirm your driver compatibility

● Confirm your feature compatibility is (current)

version 4.0 on all nodes

> db.adminCommand({ getParameter: 1,

featureCompatibilityVersion: 1 })

"featureCompatibilityVersion" : { "version" : "4.0" }

Database Upgrades

© 2019 Pythian. Confidential

4.0 4.0

4.0

● Take backup prior to starting the upgrade process

● Upgrade the Secondary nodes one by one
○ Shutdown mongod and upgrade binaries

○ Restart mongod

● Step down the Primary

> rs.stepDown(60)

● Confirm new Primary was elected

> rs.status()

Database Upgrades

© 2019 Pythian. Confidential

4.2 4.2

4.0

● Upgrade the former Primary following the same

steps as for the Secondaries
○ Shutdown mongod and upgrade binaries

○ Restart mongod

● Run the database at least for 1 week

● Enable 4.2 feature compatibility

 > db.adminCommand({ setFeatureCompatibilityVersion: "4.2" })

Database Upgrades

© 2019 Pythian. Confidential

4.2 4.2

4.2

• Version 4.2

Removed MMapv1 storage engine

• Version 4.0

Removed support for MONGODB-CR authentication

Removed pv0 protocol for Replica Sets

• Version 3.6

Default bind to localhost

• Version 3.0

WiredTiger is the default storage engine

Database Upgrades

© 2019 Pythian. Confidential

Same procedure as for the upgrades, Secondaries before Primary

• Remove incompatible features. Each database version has its own set of

feature compatibility (3.2 → 3.4) (3.4 → 3.6) (3.6 → 4.0) (4.0 → 4.2)

• Download previous version binaries

• Downgrade all Secondary nodes

• Downgrade Arbiter

• Step down the Primary

• Downgrade the former Primary

Database Downgrades

© 2019 Pythian. Confidential

4.2

● Adding index on a collection, prior MongoDB 4.2

● Connect to the Primary node

db.people.createIndex({ zipcode: 1 }, { background: true })

DDL Operation (1)

© 2019 Pythian. Confidential

● Stop one Secondary

● Restart on different port

● Remove the setting for replica set

DDL Operation (2)

© 2019 Pythian. Confidential

Secondary
--port=27777

● Add the Index on standalone node

● Rejoin the node to the replica after the index was added

● Repeat the process on the other Secondary

● Step down the Primary

● Add the index

DDL Operation (2)

Secondary
--port=27777

>db.people.createIndex({zipcode:1})

© 2019 Pythian. Confidential

● MongoDB Cloud manager backup requires monthly subscription

● Mongodump as logical backup for smaller datasets

● Backup with file system snapshot
○ Pick one Secondary

○ Lock the database for writes

 > db.fsyncLock()

○ Take snapshot

○ Unlock the database

 > db.fsyncUnlock()

Backups

© 2019 Pythian. Confidential

● Get the backup to your first node in the replica

● Start standalone mongod using the backup files

● Drop local database and shutdown the standalone

● Start new single node replica set

● Add additional members to the replica set

○ Copy the files from the single node to the other nodes, or

○ Perform initial sync on the other nodes

Useful when restoring QA/Staging from production backups

Restore in new Replica set

© 2019 Pythian. Confidential

--transitionToAuth option for performing a no-downtime upgrade to enforcing
authentication on running replica set (available since MongoDB 3.4)

• Connect to the Primary node and create necessary users

• Modify your Applications to start using authentication

• Create and copy a keyfile on all nodes in your replica set

• Restart all Secondary nodes with transitionToAuth configuration variable

• Step down the Primary node and restart it with transitionToAuth

• At this point all database connections should start using Authentication

• Again restart all Secondaries, now without transitionToAuth configuration variable

• At last, step down the Primary and restart mongod without transitionToAuth

• The replica set is now enforcing Authentication

Enable access control

© 2019 Pythian. Confidential

Upgrade replica to use TLS

© 2019 Pythian. Confidential

1. Restart the processes with ssl.Mode: allowSSL
net:
 ssl:
 mode: allowSSL

Switch the clients to use TLS/SSL

2. Upgrade to preferSSL by issuing the command on each node
db.adminCommand({ setParameter: 1, sslMode: "preferSSL" })

3. Upgrade to requireSSL by issuing the command on each node
db.adminCommand({ setParameter: 1, sslMode: "requireSSL" })

Update the config file to persist the settings
net:
 ssl:
 mode: requireSSL

Monitoring Replica Set
• Replica set has no Primary

• Number of unhealthy members is above threshold

• Replication lag is above threshold

• Replica set elected new Primary

• Host of any type has restarted

• Host of type Secondary is recovering

• Host of any type is down

• Host of any type has experienced Rollback

• Network issues between members of the replica set

• Monitoring backup status

© 2019 Pythian. Confidential

Summary
• Replica set with odd number of voting members

• Hidden or Delayed member for dedicated functions (reporting, backups …)

• Have more than one eligible Primary in the replica set

• Always first patch the Secondaries before starting the Primary

• Run replica set members with same version, hardware/OS for all nodes

• Monitor your replica set status and nodes

• Monitor replication lag and Oplog size

• Regularly upgrade your database as new version mature

• Take backup and regularly run restore tests

• Secure your database by enabling authentication and authorisation

© 2019 Pythian. Confidential

