
Tracing and Profiling MySQL
Mostly with Linux tools: from strace and gdb to ftrace, bpftrace,

perf and dynamic probes

Valerii Kravchuk, Principal Support Engineer, MariaDB
vkravchuk@gmail.com

1

www.percona.com

Who am I?
Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005-2012
● Principal Support Engineer in Percona, 2012-2016
● Principal Support Engineer in MariaDB Corporation since March 2016
● http://mysqlentomologist.blogspot.com - my blog about MySQL (a lot about

MySQL bugs, but some HowTos as well)
● https://www.facebook.com/valerii.kravchuk - my Facebook page, a lot about

MySQL (mostly bugs…)
● http://bugs.mysql.com - my personal playground
● @mysqlbugs #bugoftheday
● Community Contributor of the Year 2019
● I like FOSDEM and used to participate at Percona Live conferences...

2

http://mysqlentomologist.blogspot.com
http://mysqlentomologist.blogspot.com/search/label/howto
https://www.facebook.com/valerii.kravchuk
http://bugs.mysql.com
https://twitter.com/mysqlbugs
https://www.percona.com/blog/2019/05/29/mysql-community-awards-at-percona-live-2019/
https://fosdem.org/2020/
https://www.slideshare.net/valeriikravchuk1/understanding-innodb-locks-and-deadlocks

www.percona.com

Sources of tracing and profiling info for MySQL

● Trace files from -debug binaries, optimizer trace files
● (Extended) slow query log (thanks Percona!)
● show [global] status;
● show engine innodb status\G
● show engine innodb mutex;
● InnoDB-related tables in the INFORMATION_SCHEMA
● userstat (Percona Server and other builds)
● show profiles;
● PERFORMANCE_SCHEMA
● Profilers (even simple like pt-pmp or real like perf)
● OS-level tracing and profiling tools
● tcpdump analysis

3

https://www.percona.com/doc/percona-server/LATEST/diagnostics/slow_extended.html
https://mariadb.com/kb/en/library/information-schema-innodb-tables/
https://vividcortex.com/blog/2014/02/25/performance-schema-slowquery-log-tcp-sniffing/

www.percona.com

What is this session about?

● It’s about tracing and profiling MySQL, and mostly some
tools MySQL DBA can use for tracing and profiling in
production on Linux:
○ perf (I think it’s the best and easiest to use now)
○ few words on PMP (pt-pmp)
○ ftrace
○ eBPF and related tools (like bpftrace)
○ … and maybe more...

● Why not about gprof, Callgrind, Massif, dtrace, SystemTap?
● Why not entirely about Performance Schema?
● Performance impact of tracing and profiling

4

https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://poormansprofiler.org/
https://www.percona.com/doc/percona-toolkit/2.2/pt-pmp.html
https://en.wikipedia.org/wiki/Ftrace
https://github.com/iovisor/bpftrace
https://users.cs.duke.edu/~ola/courses/programming/gprof.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://dtrace.org/blogs/brendan/2011/03/14/mysql-query-latency-with-the-dtrace-pid-provider/
http://www.slideshare.net/posullivan/monitoring-mysql-with-dtracesystemtap
https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html
https://www.slideshare.net/ValeriyKravchuk/applying-profilers-to-my-sql-fosdem-2017

www.percona.com

Why not about Performance Schema?

● It may be NOT compiled in (see MySQL from Facebook)
● It may be NOT enabled when server was started (see

MariaDB)
● Specific instruments may not be enabled at startup and

then it’s too late (see Bug #68097)
● Sizing instruments properly (memory used and

performance impact vs details collected) may be
problematic (depends on version also)

● Part of the code or 3rd party plugin may not be
instrumented at all or in enough details (see Bug #83912)

● It does not give you a system-wide profiling, just for
selected parts of MySQL server code

● Other people (including myself) talk and write a lot about it
5

https://bugs.mysql.com/bug.php?id=68097
http://bugs.mysql.com/bug.php?id=83912
http://www.slideshare.net/ValeriyKravchuk/mysql-performance-schema-missingmanualflossuk

www.percona.com

Not Enough Details in Performance Schema

Samples: 52K of event 'cpu-clock', Event
count (approx.): 13037500000
Overhead Command Shared Object Symbol
 43.75% mysqld mysqld [.]
Item_func_mul::int_op
 16.97% mysqld mysqld [.]
Item_func_benchmark::val_int
 14.10% mysqld mysqld [.]
Item_int::val_int
 13.50% mysqld mysqld [.]
Item_func_numhybrid::val_int
...
 2.58% mysqld mysqld [.]
Item_func_numhybrid::result_type
...

30 SELECT `benchmark` (?, ... * ?)
(13055172.39?)
30 stage/sql/init (51.56?)
30 stage/sql/checking permissions
(2.27?)
30 stage/sql/Opening tables (1.00?)
30 stage/sql/After opening tables
(0.62?)
30 stage/sql/init (9.32?)
30 stage/sql/optimizing (7.41?)
30 stage/sql/executing (13055061.32?)
30 stage/sql/end (3.98?)
30 stage/sql/query end (2.34?)
30 stage/sql/closing tables (1.73?)
30 stage/sql/freeing items (4.22?)
30 stage/sql/cleaning up (1.13?)

● Yes, this is for primitive select benchmark(500000000,2*2) from Bug #39630
● Performance Schema query is like 20 lines long to make it readable

6

https://bugs.mysql.com/bug.php?id=39630

www.percona.com

Typical “profiling” query to Performance Schema

● This is how it may look like:
SELECT thread_id, event_id, nesting_event_id, CONCAT(CASE WHEN event_name
LIKE 'stage%' THEN
CONCAT(' ', event_name) WHEN event_name LIKE 'wait%' AND
nesting_event_id IS NOT NULL THEN CONCAT(' ', event_name) ELSE
IF(digest_text IS NOT NULL, SUBSTR(digest_text, 1, 64), event_name) END,
' (',ROUND(timer_wait/1000000000, 2),'ms) ') event
FROM (
 (SELECT thread_id,
 event_id, event_name, timer_wait, timer_start, nesting_event_id,
 digest_text FROM events_statements_history_long)
UNION
 (SELECT
 thread_id, event_id, event_name, timer_wait, timer_start,
 nesting_event_id, NULL FROM events_stages_history_long)
UNION
 (SELECT
 thread_id, event_id, event_name, timer_wait, timer_start,
 nesting_event_id, NULL FROM events_waits_history_long)
) events
ORDER BY thread_id, event_id;

7

www.percona.com

Not Enough Details in Performance Schema

● Now, where the time is spent on “statistics” stage in case
presented in Bug #83912?

| 26 | 379 | NULL | SELECT * FROM `t0` WHERE ID = ? (13072.50ms)
| 26 | 380 | 379 | stage/sql/init (0.05ms)
| 26 | 383 | 379 | stage/sql/checking permissions (0.00ms)
| 26 | 384 | 379 | stage/sql/Opening tables (0.02ms)
| 26 | 386 | 379 | stage/sql/After opening tables (0.00ms)
| 26 | 387 | 379 | stage/sql/System lock (0.00ms)
| 26 | 389 | 379 | stage/sql/Table lock (0.00ms)
| 26 | 391 | 379 | stage/sql/init (0.02ms)
| 26 | 392 | 379 | stage/sql/optimizing (0.01ms)
| 26 | 393 | 379 | stage/sql/statistics (13072.32ms)
| 26 | 396 | 379 | stage/sql/preparing (0.00ms)
| 26 | 397 | 379 | stage/sql/Unlocking tables (0.02ms)
| 26 | 398 | 379 | stage/sql/executing (0.00ms)
| 26 | 399 | 379 | stage/sql/Sending data (0.01ms)
| 26 | 400 | 379 | stage/sql/end (0.00ms)
| 26 | 401 | 379 | stage/sql/query end (0.00ms)

8

http://bugs.mysql.com/bug.php?id=83912

www.percona.com

So, what do I suggest?
● Use Linux tracing tools!
● Yes, all that “...strace, and ltrace, kprobes, and tracepoints, and uprobes, and

ftrace, and perf, and eBPF”
● Julia Evans explains and illustrates them all here
● Brendan D. Gregg explains them all with a lot of details and numerous

examples:

9

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
http://www.brendangregg.com/

www.percona.com

Few words on strace
● strace may help MySQL DBA to find out:

● what files are accessed by the mysqld process or utilities, and in what
order

● why some MySQL-related command (silently) fails or hangs
● why some commands end up with permission denied or other errors
● what signals MySQL server and tools get
● what system calls could took a lot of time when something works slow
● when files are opened and closed, and how much data are read
● where the error log and other logs are really located (we can look for

system calls related to writing to stderr, for example)
● how MySQL really works with files, ports and sockets

● See my blog post for more details
● Use in production as a last resort (2 interrupts per system call, even not

those we care about, may leave traced process hanged)
● strace surely slows server down

10

https://linux.die.net/man/1/strace
http://mysqlentomologist.blogspot.com/2017/12/using-strace-for-mysql-troubleshooting.html
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

www.percona.com

Few words on DTrace
● DTrace
● If you use Oracle Linux, go for it! Making it work on Fedora 29 took me too

much time to complete for the talk

11

www.percona.com

Few words on SystemTap (stap)
● SystemTap:
●

12

www.percona.com

Few words on pt-pmp (Poor Man’s Profiler)
● https://www.percona.com/doc/percona-toolkit/LATEST/pt-pmp.html

pt-pmp [-i 1] [-s 0] [-b mysqld] [-p pidofmysqld] [-l 0] [-k file] [--version]

● It is based on original idea by Domas, http://poormansprofiler.org/. I use
the awk code from the above to analyse backtraces of all threads.

● When mysqld hangs or is slow, you can get some insight quickly - use
pt-pmp to find out why (or what threads mostly do at the moment). For
example, see Bug #92108 (fixed in 5.7.25+, binlog access vs P_S query),

● Yet another example of how it is used: Bug #78277 - InnoDB deadlock,
thread stuck on kernel calls from transparent page compression, “Open”

● Use in production as a last resort (may hang mysqld, --SIGCONT)
● pt-pmp surely slows server down :) Hints:

○ https://bugs.launchpad.net/percona-toolkit/+bug/1320168 - partial
workaround

○ Use quickstack instead of gdb (check this discussion)

13

https://www.percona.com/doc/percona-toolkit/LATEST/pt-pmp.html
http://poormansprofiler.org/
https://bugs.mysql.com/bug.php?id=92108
https://bugs.mysql.com/bug.php?id=78277
https://bugs.launchpad.net/percona-toolkit/+bug/1320168
https://github.com/yoshinorim/quickstack
https://www.facebook.com/valerii.kravchuk/posts/1107379206020685

www.percona.com

pt-pmp Applied to “statistics” Case of Bug #83912
MariaDB [test]> select * from t0 where id = 15;
+----+------+--------------------+
| id | c1 | c2 |
+----+------+--------------------+
| 15 | 290 | 0.7441205286831786 |
+----+------+--------------------+
1 row in set (52.27 sec)
 1

select(libc.so.6), os_thread_sleep(os0thread.cc:303), srv_conc_enter_innodb_wi
th_atomics(srv0conc.cc:298),srv_conc_enter_innodb(srv0conc.cc:298),innobase
_srv_conc_enter_innodb(ha_innodb.cc:1906), ha_innobase::index_read(ha_innodb.
cc:1906),handler::index_read_idx_map(handler.cc:5441),handler::ha_index_rea
d_idx_map(handler.cc:2646),join_read_(handler.cc:2646),join_read__table(han
dler.cc:2646),make_join_statistics(sql_select.cc:3935),JOIN::optimize_inner(
sql_select.cc:1366), JOIN::optimize(sql_select.cc:1045), mysql_select(sql_sele
ct.cc:3430),handle_select(sql_select.cc:372),execute_sqlcom_select(sql_pars
e.cc:5896),mysql_execute_command(sql_parse.cc:2971),mysql_parse(sql_parse.c
c:7319),dispatch_command(sql_parse.cc:1488),do_command(sql_parse.cc:1109),d
o_handle_one_connection(sql_connect.cc:1349),handle_one_connection(sql_conn
ect.cc:1261),pfs_spawn_thread(pfs.cc:1860),start_thread(libpthread.so.0),cl
one(libc.so.6)

...
14

www.percona.com

A lot about tracing sources
●
●

15

www.percona.com

A lot about ftrace
● ftrace
● The way you fundamentally interact with ftrace is:

○ Write to files in /sys/kernel/debug/tracing/
○ Read output from files in /sys/kernel/debug/tracing/

●

16

www.percona.com

A lot about eBPF
● eBPF is a tiny language for a VM that can be executed inside Linux Kernel. eBPF instructions can

be JIT-compiled into a native code. eBPF was originally conceived to power tools like tcpdump and
implement programmable network packed dispatch and tracing. Since Linux 4.1, eBPF programs
can be attached to kprobes and later - uprobes, enabling efficient programmable tracing

● Brendan Gregg explained it here:

17

https://lwn.net/Articles/740157/
http://www.brendangregg.com/ebpf.html

www.percona.com

Few words about bpftrace
●
●

18

www.percona.com

A lot about perf
● If you are interested in details presented nicely...
●

19

https://jvns.ca/perf-zine.pdf

www.percona.com

Adding uprobes to MySQL dynamically with perf
● The idea was to add dynamic probe to capture SQL queries
● This was done on Ubuntu 16.04 with recent Percona Server 5.7
● First I had to find out with gdb where is the query (hint: dispatch_command

has com_data parameter):
(gdb) p com_data->com_query.query
$4 = 0x7fb0dba8d021 "select 2"

● Then it’s just as easy as follows:

openxs@ao756:~$ sudo perf probe -x /usr/sbin/mysqld 'dispatch_command
com_data->com_query.query:string'

openxs@ao756:~$ sudo perf record -e 'probe_mysqld:dispatch_command*' -aR

^C[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 0.676 MB perf.data (3 samples)]

openxs@ao756:~$ sudo perf script >/tmp/queries.txt

openxs@ao756:~$ sudo perf probe --del dispatch_command

20

www.percona.com

Adding uprobes to MySQL dynamically with perf
● We have queries captured with probe added on previous slide:

openxs@ao756:~$ cat /tmp/queries.txt

 mysqld 31340 [001] 3888.849079: probe_mysqld:dispatch_command:
(be9250) query="select 100"

 mysqld 31340 [001] 3891.648739: probe_mysqld:dispatch_command:
(be9250) query="select user, host from mysql.user"

 mysqld 31340 [001] 3895.890141: probe_mysqld:dispatch_command:
(be9250) query="select 2"

● We can control output format, but basically we see binary, PID, CPU where
uprobe was executed on, timestamp (milliseconds since start of record),
probe and variables with format we specified

●

21

http://manpages.ubuntu.com/manpages/bionic/man1/perf-script.1.html

www.percona.com

perf - Success Stories
● perf (sometimes called perf_events or perf tools, originally Performance

Counters for Linux, PCL) is a new performance analyzing tool for Linux,
available from kernel version 2.6.31 (supported by RHEL6 since 2010)

● It is easier to use .and more popular recently for MySQL than older profilers
● Here is the list of some MySQL bugs by Mark Callaghan confirmed by perf:

○ Bug #69236 - "performance regressions for single-threaded workloads, part 2" -
MySQL 5.6 is spending a lot more time in rec_get_offsets_func,
trx_undo_report_row_operation, btr_cur_optimistic_insert. Same in 5.7.8, “Verified”

○ Bug #74325 - “updates to indexed column much slower in 5.7.5” - nice perf outputs
there. It’s about innodb_fill_factor=100 (that leaves 1/16 free space since 5.7.8).

○ Bug #74280 - “covering secondary scans worse than PK scan at high concurrency” -
the mutex contention that isn't visible in P_S output because the block rw-lock isn't
instrumented. Verified regression since 5.7.5 vs 5.6.x. See also:
Bug #74283 - “Non-covering secondary index scans degrade more in 5.7 than 5.6”

○ http://smalldatum.blogspot.com/2014/10/details-on-range-scan-performance.html - on
two bugs above, perf allows to see the difference

22

http://www.brendangregg.com/perf.html
https://en.wikipedia.org/wiki/Profiling_%28computer_programming%29
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux_kernel
https://bugs.mysql.com/bug.php?id=69236
http://smalldatum.blogspot.com/2015/08/single-threaded-linkbench-performance.html
https://bugs.mysql.com/bug.php?id=74325
https://bugs.mysql.com/bug.php?id=74280
https://bugs.mysql.com/bug.php?id=74283
http://smalldatum.blogspot.com/2014/10/details-on-range-scan-performance.html

www.percona.com

perf - Basic Usage
● Check my post, “perf Basics for MySQL Profiling”, for details and references,

but basic minimal steps are:
○ Make sure perf-related packages are installed (perf with RPMs) for your kernel:

sudo apt-get install linux-tools-generic
○ Make sure debug symbols are installed and software is built with -fno-omit-frame-pointer
○ Start data collection for some time using perf record:

sudo perf record -a [-g] [-F99] [-p `pidof mysqld`] sleep 30
Run your problematic load against MySQL server

○ Samples are collected in `pwd`/perf.data by default
○ Process samples and display the profile using perf report:

sudo perf report [-n] [-g] --stdio

● Alternatively, run in foreground and interrupt any time with Ctrl-C:
[root@centos ~]# perf record -ag
^C

● Or run in background and send -SIGINT when done:
[root@centos ~]# perf record -ag &
[1] 2353
[root@centos ~]# kill -sigint 2353

● Let’s see how it works alive… (demo). We’ll see perf top, perf record -g etc
23

http://mysqlentomologist.blogspot.com/2017/01/perf-basics-for-mysql-profiling.html

www.percona.com

perf - Call Graphs
Use -g option of perf record to get call graphs/backtraces with perf, then:

openxs@ao756:~/dbs/maria10.1$ sudo perf report --stdio
...

31.02% mysqld mysqld [.] Item_func_mul::int_op()
 |
 --- Item_func_mul::int_op()
 |
 |--94.56%-- Item_func_hybrid_field_type::val_int()
 | Item_func_benchmark::val_int()
 | Item::send(Protocol*, String*)
 | Protocol::send_result_set_row(List<Item>*)
 | select_send::send_data(List<Item>&)
 | JOIN::exec_inner()
 | JOIN::exec()
 | mysql_select(THD*, Item***, TABLE_LIST*, ...
 | handle_select(THD*, LEX*, select_result*, unsigned
long)
 | execute_sqlcom_select(THD*, TABLE_LIST*)
 | mysql_execute_command(THD*)
 | mysql_parse(THD*, char*, unsigned int, Parser_state*)
 | dispatch_command(enum_server_command, THD*, char*,
...)
 | do_command(THD*)
...

24

www.percona.com

Studying Hanging in “statistics” Case(s)
● See my blog post for details and full outputs:

 | |--71.70%-- srv_conc_enter_innodb(trx_t*)
 | | ha_innobase::index_read(...)
 | | handler::index_read_idx_map(...)
 | | handler::ha_index_read_idx_map(...)
 | | join_read_const(st_join_table*)
 | | join_read_const_table(THD*, ...)
 | | make_join_statistics(JOIN*, ...)
 | | JOIN::optimize_inner()
 | | JOIN::optimize()
 | | mysql_select(THD*, ...)
 ...

● We can see that time to do SELECT is mostly spent waiting to enter InnoDB
queue while reading data via index (dive) to get statistics for the optimizer

● We can see where the time is spent by kernel and other processes (-a)

25

http://mysqlentomologist.blogspot.com/2017/01/perf-basics-for-mysql-profiling.html

www.percona.com

Am I crazy doing these?
● Quite possible, maybe I just have too much free time :)
● Or maybe I do not know how to use Performance Schema properly
● But I am not alone...
● MariaDB developers are interested in adding dynamic probes with perf while

working on RocksDB storage engine performance problems
● People use perf probes for tracing Oracle RDBMS! There is enough

instrumentation there for almost everything, but still...
● Dynamic tracers are proven tools for instrumenting OS calls (probes for

measuring I/O latency at microsecond precision, for example)
● Another topic, more complex but also more exciting, is dynamic tracing of

RDBMS userspace. This topic is of growing interest with modern servers
hosting large amounts of RAM and workloads that are often CPU-bound.
There are no “waits”, but time is still spent somewhere!

● For open source RDBMS like MySQL there is no reason NOT to use
dynamic probes while UDST are not on every other line of the code :)

● eBPF and bpftrace make it even easier and safer to do these in production

26

https://mariadb.com/kb/en/library/profiling-with-linux-perf-tool/
https://db-blog.web.cern.ch/blog/luca-canali/2016-01-linux-perf-probes-oracle-tracing

www.percona.com

Thank you!
Questions and Answers?

Please, report bugs at:

https://bugs.mysql.com

https://jira.mariadb.org

https://jira.percona.com

27

https://bugs.mysql.com
https://jira.mariadb.org
https://jira.percona.com

