ClickHouse for Time-Series

Alexander Zaitsev
Agenda

What is special about time series
What is ClickHouse
How ClickHouse can be used for time series
Altinity Background

- Premier provider of software and services for ClickHouse
- Incorporated in UK with distributed team in US/Canada/Europe
- Main US/Europe sponsor of ClickHouse community
- Offerings:
 - Enterprise support for ClickHouse and ecosystem projects
 - Software (Kubernetes, cluster manager, tools & utilities)
 - POCs/Training
What is time series?

Time ordered events representing the process change over time

Monitoring
Finance
Internet of Things
What is time series analytics?

Measure the *change*:

- How something has been changed comparing to the past
- What changes are going on right now
- Predict changes in the future
Dedicated time series DBMSs grow!

- InfluxDB
- Prometheus
- Kdb+
- TimescaleDB
- Amazon Timestream
- DolphinDB
What is special about time series DBMS?

- Optimized for very fast INSERT
- Efficient data storage, retention
- Aggregates, downsampling
- Fast queries

Looks like ClickHouse!
ClickHouse Overview
ClickHouse is a powerful data warehouse that handles many use cases

Understands SQL

Runs on bare metal to cloud

Stores data in columns

Parallel and vectorized execution

Scales to many petabytes

Is Open source (Apache 2.0)

Is WAY fast!

http://clickhouse.yandex
ClickHouse is FAST!

This is the first time a free, CPU-based database has managed to out-perform a GPU-based database in my benchmarks. That GPU database has since undergone two revisions but nonetheless, the performance ClickHouse has found on a single node is very impressive.

https://tech.marksblogg.com/benchmarks.html
Tables are split into indexed, sorted parts for fast queries.

Diagram:
- Table
- Part
- Part
- Part
 - Index
 - Columns
- Indexed
- Sorted
- Compressed
Merge Process re-sorates data in the background
Now we can follow how query works on a single server

SELECT DevId, Type, avg(Value)
FROM sdata
WHERE MDate = '2018-01-01'
GROUP BY DevId, Type
If one server is not enough -- ClickHouse can scale out easily

SELECT ... FROM sdata_dist

Result Set
Built-in Replication and Failover provide high availability

SELECT ... FROM sdata_dist

Result Set

ReplicatedMergeTree Engine

ClickHouse

sdata_dist

sdata

Zookeeper

Zookeeper

Zookeeper
What are the main ClickHouse use patterns?

- Fast, scalable data warehouse for online services (SaaS and in-house apps)
- Built-in data warehouse for installed analytic applications
- Monitoring and Log Storage in-house solutions
- Exploration -- throw in a bunch of data and go crazy!
ClickHouse’s Four “F”-s:

Fast!
Flexible!
Free!
Fun!
ClickHouse for Time Series
Does ClickHouse fit for time series?
Does ClickHouse fit for time series?

“One size does not fit all!”

Michael Stonebraker. 2005
Does ClickHouse fit for time series?

“ClickHouse не тормозит!”

Alexey Milovidov. 2016
Does ClickHouse fit for time series?

“One size does not fit all!”

Michael Stonebraker

“ClickHouse не тормозит!”

Alexey Milovidov
November 2018 benchmark. TSBS

- https://github.com/timescale/tsbs
- ClickHouse vs TimescaleDB vs InfluxDB (vs Cassandra)
- Amazon r5.2xlarge instance, 8 vCPUs, 64GB RAM, EBS storage
- 100M rows, 10 metrics (columns) + metadata
- 15 test queries common for time series use cases, 8 threads

[https://www.altunity.com/blog(clickhouse-for-time-series)](https://www.altunity.com/blog(clickhouse-for-time-series)}
November 2018 benchmark. TSBS
November 2018 benchmark. TSBS

Source raw data: 22.5GB
November 2018 benchmark. TSBS
November 2018 benchmark. TSBS

“Heavy” queries, time in sec

- groupby-ordered-limit
- double-groupby-1
- lastpoint
- double-groupby-5
- double-groupby-all
- high-cpu-all

- ClickHouse
- TimescaleDB
- InfluxDB
What have we learned?

- ClickHouse load performance is outstanding! *
- Compression is efficient, but not as good as InfluxDB’s
- Queries are fast, but can be even faster

* It turned out later, it has been limited by storage performance reading source data
ClickHouse as time series DBMS

Time series performance with flexibility of feature rich analytical SQL DBMS
How to build time series apps with ClickHouse
Basic model:

timestamp | device (user, etc.) | metric | value | attrs, tags

Options:
- Well-structured data (all metrics are known)
- Semi-structured data (metrics are not known)
- Non-structured tags
CREATE TABLE cpu (
 created_date Date DEFAULT today(),
 created_at DateTime DEFAULT now(),
 time String,
 tags_id UInt32, /* join to dim_tag */
 usage_user Float64,
 usage_system Float64,
 usage_idle Float64,
 usage_nice Float64,
 usage_iowait Float64,
 usage_irq Float64,
 usage_softirq Float64,
 usage_steal Float64,
 usage_guest Float64,
 usage_guest_nice Float64
) ENGINE = MergeTree(created_date, (tags_id, created_at), 8192);
CREATE TABLE cpu_alc (
 created_date Date,
 created_at DateTime,
 time String,
 tags_id UInt32,
 metrics Nested(
 name LowCardinality(String),
 value Float64
)
) ENGINE = MergeTree(created_date, (tags_id, created_at), 8192);

SELECT max(metrics.value[indexOf(metrics.name,'usage_user')]) FROM ...
CREATE TABLE cpu_rlc (
created_date Date,
created_at DateTime,
time String,
tags_id UInt32,
metric_name LowCardinality(String),
metric_value Float64
) ENGINE = MergeTree(created_date, (metric_name, tags_id, created_at), 8192);

SELECT
 maxIf(metric_value, metric_name = 'usage_user'),
 ...
FROM cpu_r
WHERE metric_name IN ('usage_user', ...)

Schema options: let’s compare

<table>
<thead>
<tr>
<th>Schema type</th>
<th>Size on disk</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| Columns | 1.23 GB | - Best compression
 - Best insert/query performance | - Schema is fixed |
| Arrays | 1.48 GB | - Good compression
 - Works for semi-structured data | - Speed degrades with array size |
| Rows | 4.7 GB | - Simplest
 - Excellent speed for a single metric | - Bad compression, too many rows
 - Performance degrades when multiple metrics are queried together |

Compression and Encoding

- Compression vs Encoding
- Example of encodings:
 - RLE
 - Dictionary encoding
 - Entropy coding
Codecs in ClickHouse

- LowCardinality – special data type
- Delta – for ordered time stamps
- DoubleDelta – for ordered time stamps
- Gorilla – for float gauges
- T64 – for integers
- .. and
- LZ4 and ZSTD
- Codecs can be “chained”
CREATE TABLE benchmark.cpu_codecs_lz4 (
 created_date Date DEFAULT today(),
 created_at DateTime DEFAULT now() Codec(DoubleDelta, LZ4),
 tags_id UInt32,
 usage_user Float64 Codec(Gorilla, LZ4),
 usage_system Float64 Codec(Gorilla, LZ4),
 usage_idle Float64 Codec(Gorilla, LZ4),
 usage_nice Float64 Codec(Gorilla, LZ4),
 usage_iowait Float64 Codec(Gorilla, LZ4),
 usage_irq Float64 Codec(Gorilla, LZ4),
 usage_softirq Float64 Codec(Gorilla, LZ4),
 usage_steal Float64 Codec(Gorilla, LZ4),
 usage_guest Float64 Codec(Gorilla, LZ4),
 usage_guest_nice Float64 Codec(Gorilla, LZ4),
 additional_tags String DEFAULT ''
)
ENGINE = MergeTree(created_date, (tags_id, created_at), 8192);
Codecs in ClickHouse: size

![Size on disk chart]

InfluxDB: 456MB :-/
Codecs in ClickHouse: query performance

```
select count() from table where not ignore(*)
```

<table>
<thead>
<tr>
<th>Codec</th>
<th>"select *" time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClickHouse ZSTD</td>
<td>2.717</td>
</tr>
<tr>
<td>ClickHouse Codecs LZ4</td>
<td>2.422</td>
</tr>
<tr>
<td>ClickHouse Codecs ZSTD</td>
<td>2.684</td>
</tr>
<tr>
<td>ClickHouse F32 Codecs LZ4</td>
<td>2.287</td>
</tr>
<tr>
<td>ClickHouse F32 Codecs ZSTD</td>
<td>2.506</td>
</tr>
</tbody>
</table>
Codecs in ClickHouse: summary

- Codecs are good! (ClickHouse 19.11.7 and above)
- Could be better (examples InfluxDB, VictoriaMetrics)
- Will be improved:
 - Encoding in frames for better performance (middle-out algorithm)
 - Convert floats to integers before encoding (VictoriaMetrics)
 - Do not perform bit instrumentation, rely on ZSTD instead

Row data

- MV group by toStartOfMinute
- MV group by toStartOfHour
- MV group by toStartOfDay

- SummingMergeTree ORDER BY toStartOfMinute
- SummingMergeTree ORDER BY toStartOfHour
- SummingMergeTree ORDER BY toStartOfDay

- Realtime!
- Performance boost x100-1000 times!
- Aggregation of sums and uniques!
- Cascades since 19.14
CREATE TABLE aggr_by_minute
...
TTL time + interval 1 day

CREATE TABLE aggr_by_day
...
TTL time + interval 30 day

CREATE TABLE aggr_by_week
...
/* no TTL */
Time series specific queries

- No Flux of other proprietary query language
- Standard SQL
- ... enriched advanced functions
Query the last measurement for the device

SELECT *
 FROM cpu
WHERE (tags_id, created_at) IN
 (SELECT tags_id, max(created_at)
 FROM cpu
 GROUP BY tags_id)

SELECT argMax(usage_user, created_at),
 argMax(usage_system, created_at),
 ...
 FROM cpu

SELECT now() as created_at,
 cpu.*
FROM (SELECT DISTINCT tags_id from cpu) base
ASOF LEFT JOIN cpu USING (tags_id, created_at)

Tuple can be used with IN operator
Efficient argMax
ASOF
ASOF JOIN – «stitching» non-aligned time series

```sql
SELECT m1.*, m2.*
FROM m1
LEFT ASOF JOIN m2 USING (timestamp)
```
analytical functions

```sql
SELECT origin,
    timestamp,
    timestamp -LAG(timestamp, 1) OVER (PARTITION BY origin ORDER BY
    timestamp) AS duration,
    timestamp -MIN(timestamp) OVER (PARTITION BY origin ORDER BY
    timestamp) AS startseq_duration,
    ROW_NUMBER() OVER (PARTITION BY origin ORDER BY timestamp) AS sequence,
    COUNT() OVER (PARTITION BY origin ORDER BY timestamp) AS nb
FROM mytable
ORDER BY origin, timestamp;
```

This is NOT ClickHouse
Analytical functions. ClickHouse way.

SELECT
 origin,
 timestamp,
 duration,
 timestamp - ts_min AS startseq_duration,
 sequence,
 ts_cnt AS nb
FROM (
 SELECT
 origin,
 groupArray(timestamp) AS ts_a,
 arrayMap((x, y) -> (x - y), ts_a, arrayPushFront(arrayPopBack(ts_a), ts_a[1])) AS ts_diff,
 min(timestamp) AS ts_min,
 arrayEnumerate(ts_a) AS ts_row, -- generates array of indexes 1,2,3, ...
 count() AS ts_cnt
 FROM mytable
 GROUP BY origin
)
ARRAY JOIN ts_a AS timestamp, ts_diff AS duration, ts_row AS sequence
ORDER BY origin, timestamp

1. Convert time-series to an array with groupArray
2. Apply array magic
3. Convert arrays back to rows with ARRAY JOIN

-- not that easy but very flexible
Special functions for time series

How many sessions happened at the same time?

```
T:
-----
SessionId  timestamp
...  

SELECT
  maxIntersections(toUInt32(start),
                   toUInt32(end)),
  toDateTime(maxIntersectionsPosition(toUInt32(start), toUInt32(end)))
FROM (  
  SELECT
    sessionid,
    min(timestamp) AS start,
    max(timestamp) AS end
  FROM T
  GROUP BY sessionidid
)
```
Special functions for time series

sequenceMatch – “regular expressions” on time series data

SELECT userid
FROM hits
GROUP BY userid, sessionid
HAVING sequenceMatch('(?1).*(?2).*(?1).*(?2).*(?3)')(timestamp,
 event_type = 'product',
 event_type = 'checkout',
 event_type = 'purchase')
Special functions for time series

Anomaly detection for counters:

```
SELECT
    host,
    round( boundingRatio(timestamp, read_bytes) ) as rate
FROM host_stats
GROUP by host
ORDER BY rate
```

```
boundingRatio(timestamp, value) =
   ( argMax(value, timestamp) - argMin(value, timestamp) )
/ ( max(timestamp) - min(timestamp) )
```

<table>
<thead>
<tr>
<th>host</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2123</td>
</tr>
<tr>
<td>1</td>
<td>2102</td>
</tr>
<tr>
<td>2</td>
<td>120758</td>
</tr>
<tr>
<td>3</td>
<td>2087</td>
</tr>
</tbody>
</table>

<- anomaly (!!!)
Special functions for time series

- runningDifference, runningAccumulate, neighbor
- sumMap(key, value)
- timeSeriesGroupSum(uid, timestamp, value)
- timeSeriesGroupRateSum(uid, timestamp, value)
- skewPop, skewSamp, kurtPop, kurtSamp
- ORDER BY WITH FILL – gaps filling
- simpleLinearRegression, stochasticLinearRegression
- windowFunnel, retention, rate, maxIntersection, sequenceMatch etc.
ClickHouse for time series usage

- GraphHouse – ClickHouse backend for Graphite monitoring
- PromHouse – ClickHouse backend for Prometheus
- Percona PMM – DB performance monitoring
- Apache Traffic Control – CDN monitoring
- ClickHouse itself – system.metric_log (since 19.14)
- … inside many companies for:
 - Netflow monitoring
 - CDN
 - IoT
 - Etc.
Summary

- Time series machine generated data volumes increase
- Time series requires specialized approach to data processing
- ClickHouse can do it effectively, thanks to its performance and flexibility
- ClickHouse is not a time series DBMS but much more
Questions?

Thank you!

P.S. We are hiring!

Contacts:
info@altinity.com

Visit us at:
https://www.altinity.com

Read Our Blog:
https://www.altinity.com/blog