
46     LXF254 September 2019 www.linuxformat.com

in-depth Databases

his is the information era, where
almost everything is data. The
scale at which this data is being
collected and used is growing at

an exponential rate. The speed at which
organisations are ingesting, storing and
processing data is hard to fathom; it’s very
common these days for even small-scale
companies to process terabytes and even
petabytes of data. In order for this data to be
crunched into meaningful information, it first
needs to be housed in a database.

Databases have become a part of your daily
routine in more ways than you can imagine.
These days you don’t even have to be on a
computer or use your smartphone to interact
with a database. For instance, when you
purchase items at the local supermarket,
chances are there’s an inventory database that
automatically updates itself while you checkout.
The same thing happens when you borrow a
book from the library, withdraw cash from the

ATM or buy a movie ticket – the list is virtually
endless. In fact, it’s safe to say that a majority
of your daily chores will involve some sort of
interaction with a database.

In addition to these traditional uses of a
database that are fulfilled by what is known as
a relational database, the internet has had a
great influence on databases in both form and
function. The explosion of social media
platforms such as Twitter, Facebook,
Instagram and the like have ushered in a new
generation of databases that are designed to
overcome the scalability limitations of the
earlier varieties. These hold vast quantities of
different kinds of data that just cannot be
stored and processed, at least not efficiently, by
traditional relational database systems.

Taking a look at the evolution of the
mechanisms for data storage, retrieval and
processing will help us better appreciate the
challenges of an often unappreciated and
unglamorous branch of computer science.

T

Twiddling thumbs between sessions at a database conference,
Mayank Sharma ponders on the impact of the web on databases…

The future of
the database

September 2019 LXF254     47www.techradar.com/pro/linux

Databases in-depth

the first commercially available relational database. It
became the dominant format and didn’t leave much
room for anyone else by the time IBM released a full-
fledged commercial relational database in the form of
DB2 in 1983.

The 1980s saw the development of various
commercial relational databases as their benefits
became more widely known. The first relational databases
were quite slow, especially while accessing data records.
However, their performance improved with the
development of new storage and indexing techniques
and better query processing and optimisation.
Eventually, relational databases became the dominant
type of database system for what are now referred to as
traditional database applications.

Open sesame
One of the key ingredients that fuelled the success of
the relational database model was open source code. It
started with the Ingres database in 1974, which made its
code available for a small fee under the BSD licence. The
Ingres code spawned a number of popular and
commercially successful databases such as Sybase

e’ve been using databases to help us
organise information since time immemorial.
Archaeologists have found stone tablets in digs

dating to 4000 BC that were used to index various kinds
of information. Before the advent of the computer, we
were cataloguing information manually. The first
computer databases were just digital versions of this
manual system: a flat file of a consecutive list of records.
While filing information was straightforward, search and
retrieval was a slow, time-consuming process. In the
mid-1960s IBM started using a hierarchical data model
for its information management system, called IMS. It
featured a parent node that pointed to several child
nodes. IMS was famously used by NASA to help with
the design of the Lunar Lander.

In 1969, the Committee on Data Systems Languages
(CODASYL) consortium, which was a group of scientists
and researchers working with the COBOL programming
language, got together and came up with a standard
interface for how COBOL programs should access and
share databases. The lead proponent of the CODASYL
group was Charles Bachmann, who tweaked the
hierarchical model and made it more flexible by
establishing what’s known as the network data model,
enabling child nodes to have multiple parents.

The CODASYL approach was a very complicated
system to execute and required substantial training.
Edgar ‘Ted’ Codd was a mathematician at IBM who saw
programmers wasting time rewriting programs every
time there were any changes to the layout of the
database. He proposed a database abstraction approach
that separated the logical and the physical structure of
the database.

His relational database model, first proposed in 1970,
organised a body of data into simple tables of related
information. Instead of a freeform list of linked records,
Codd proposed data to be stored in tables with fixed-
length records. This, along with several other changes,
made it easier to access, append and modify data. His
words resonated with C. J. Date, an instructor
at IBM, and together the duo authored several papers
on relational databases.

Missed opportunity
Despite both Codd and Date being IBM employees, the
company wasn’t prepared to support their idea since it
already had a successful database product in IMS. But
that didn’t stop others from jumping on the relational
database model. In 1973, two researchers at UC Berkeley,
Michael Stonebraker and Eugene Wong, built on Codd’s
idea to create the Ingres (Interactive Graphics and
Retrieval System) database. Ingres worked with a query
language known as QUEL.

Several companies used Ingres as the basis for
successful commercial products, although it took until
1975 for IBM to produce an experimental relational
database called System R. It used a structured query
language (SQL), developed by IBM’s Don Chamberlin and
Raymond Boyce, to search and modify data. SQL quickly
replaced QUEL as a more functional query language and
became an ANSI standard towards the end of the 1980s.

The third major adaptation of Codd’s idea came about
in 1977, when Larry Ellison got together with Bob Miner
and Ed Oats in order to commercialise the relational
database. They shipped the Oracle database in 1979 –

 The dawn of skyneT?
Artificial Intelligence (AI) and machine learning (ML) have entered 
the mainstream in the last couple of years. These technologies are 
now making their way into the next generation of databases as well. 
Administering large databases that operate complex workloads isn’t 
a simple feat, considering the amount of configuration settings that 
need to be managed. An increasing number of database vendors are 
thus infusing AI and ML in their databases in order to relegate some 
regular monitoring and optimisation tasks to an autopilot that can 
then assist admins tune the databases for maximum performance. 

“For decades, the primary time-sink for administrators has been 
routine maintenance and performance monitoring/tuning tasks that 
ensure each database system is optimised for its supported 
applications,” says Robin Schmacher. “The promise of well-designed AI 
and ML functionality in databases is that it will remove this 
productivity drain from the IT staff and have the database maintain 
and tune itself – all the while learning internally what proper 
optimisation is for each ind ividual database.” Thus databases in the 
very near future will be able to anticipate operational issues and take 
preventative actions automatically. (destroy meat-bag infestation–ED)

The share of open source databases is comparatively low when
it comes to the traditional database models.

W

Popularity broken down by database model, July 2019

Tim
e Serie

s D
BMS

Graph DBMS

Wide co
lumn st

ores

Search
 engines

Docu
ment s

tores

Nativ
e XML DBMS

RDF st
ores

Key-v
alue st

ores

Relatio
nal D

BMS

Object-
orie

ntated

Ra
nk

in
g

sc
or

es
 %

Multiv
alue DBMS

0

18.3%

81.7%

19.5%

80.5%

21.1%

78.9%

34.4%

65.6%

35%

65%

59.8%

40.2%

60.5%

39.5%

70.4%

29.5%

82.8%

17.2%

89.8%

10.2%

29.6%

70.4%

25

75

100

Commercial Licence
KEY

Open Source Licence

48     LXF254 September 2019 www.linuxformat.com

Im
ag

e
C

re
d

it
: D

B
-E

ng
in

es
.c

om

in-depth Databases

and Microsoft SQL Server, among others. After a brief
hiatus, Michael Stonebraker returned to Berkeley in 1985
and began work on the next generation of the Ingres
database to address some of the bottlenecks with the
original design. His work, dubbed Postgres (Post Ingres),
eventually evolved into PostgreSQL.

The next milestone for open source databases came
in the mid 1990s, when David Hughes wanted a database
for his network monitoring and management system

called Minerva. To meet his requirements, he developed
mSQL, first as an SQL extension to Postgres, and then as
a lightweight database with a limited subset of the SQL
standard. When mSQL development began to stagnate in
1996, its open source code was adapted into MySQL.
After the acquisition of MySQL AB by Oracle, the code
was forked into MariaDB in 2010.

Another popular database that came about as a result
of open source code was Firebird. It was forked from the
open source code of InterBase 6.0 in 2000. The database
introduced several performance improvements, and is
the default database engine in LibreOffice.

Order in chaos
The first chinks in the armour of the relational databases
began to appear with the dot-com boom in the 2000s.
The proliferation of online applications and platforms
such as social media websites, e-commerce vendors,
cloud storage silos and others led to a huge surge in the
amount of data that now had to be stored in large
databases and massive servers. As the nature of the data
changed, relational databases – which had mastered the
art of storing and processing structured data – were
incapable of efficiently handling the vast amounts of
non-relational, schema-less unstructured data.

This called for a new type of database system that
could provide fast search and retrieval, as well as reliable
and safe storage of the unstructured, non-traditional data.
NoSQL came about as a response to the need for faster
speed and the processing of this new unordered and
disorganised data. The term NoSQL is most often
interpreted as Not Only SQL. It points to the fact that in
these databases, some of the data is stored using SQL
systems, whereas other data is stored using NoSQL,
depending on the requirements of the application.

The highlight of the NoSQL data model is that it is non-
relational and uses a distributed database system. It is
fast, uses an ad hoc method of organising data, and is
efficient at processing different kinds of data at high-
volumes. The widespread use of NoSQL can be attributed
to the services offered by popular social media platforms
and cloud services such as Twitter, Facebook, LinkedIn,
Instagram and Google. These online platforms store and
process colossal amounts of unstructured data.

Just as open source helped fuel the evolution of
relational databases, it essayed a similar role in helping

 TyPes of daTabases
NoSQL databases provide the performance, scalability and stability
that’s required by the modern data-driven apps we interact with
these days. But that is where the similarity between NoSQL systems
end. In fact, it wouldn’t be wrong to say that the only thing most
NoSQL databases have in common is that they do not follow the
traditional relational data model. Broadly speaking, NoSQL databases
typically fall into one of four categories:
Key-value These function in heavy read environments. Key-value
stores are the simplest form of NoSQL databases and won’t be of
much help when there are complex relationships between data
elements. That’s because all access to the database is done using
a primary key. Redis and Memcached are frequently used solutions.
Columnar These are optimised for reading and writing columns of
data as opposed to rows of data. Also known as wide-column store
databases, they are well suited for analysing huge data sets. Apache
Cassandra, HBase and Accumulo are the best-known ones.
Document These store, manage and retrieve data as semi-
structured documents such as JSON and XML. These document-
orientated databases store all information for a given object, and
each object can be quite different from the others. MongoDB,
Couchbase and CouchDB are the best known and most widely used.
Graph Focus on how data relates to other data points. These
databases explore the relationships that link data. Data from graph
databases stores directed link between data sets called edges. Neo4j,
OrientDB and JanusGraph are popular examples. As you can see, graph databases have been steadily rising, while the

popularity of relational databases has plateaued in the last five years.

Relational DBMS 75.3%

Search engines
4.7%

Time Series DBMS
0.6%

Wide column
stores 3.3%

Document stores 8.7% Graph DBMS 1.5%

Key-value stores 4.8%

Native XML
DBMS 0.3%

RDF stores
0.4%

Ranking scores per category, July 2019

Complete Trend, starting with Jan 2013
Graph DBMS
Document stores

Object oriented DBMS

Search engines
Key-value stores

Multivalue DBMS
Time Series DBMS
Wide column stores

Reletional DBMSRDF stores
Native XML DBMS

September 2019 LXF254     49www.techradar.com/pro/linux

D
at

a
fr

om
: D

B
-E

ng
in

es
.c

om

Databases in-depth

All things considered, 12 out of the top 22 databases in use today are open source.

Percona Live is a yearly conference dedicated to open source
databases. It will be held in Amsterdam this year from 30 September
to 2 October.

democratise NoSQL databases. The term NoSQL can be
traced back to 1998 when Carlo Strozzi released his
lightweight open source Strozzi NoSQL database, which
was relational but didn’t use SQL as the query language.
‘NoSQL’ as it is used today originated in 2009 when it
was used to describe the emergence of new databases
that do not view data as strictly defined tables of rows
and columns. It sought to encapsulate the clones of
Google’s Bigtable and Amazon’s DynamoDB that had
started popping up around that time.

One of the developers of DynamoDB, Avinash
Lakshman, helped develop a NoSQL database at
Facebook that was eventually released as Cassandra
under an open source licence in 2008. But it was
MongoDB that made the industry stand up and take
notice of open source non-relational databases as viable
solutions. Unlike traditional databases, MongoDB is a
document database that stores related data clumped
together in chunks.

Another approach to catalogue the complex
distributed data relationships in the social-media-
dominated web came about in the form of graph
databases. One of the oldest graph databases is the open
source Neo4j. Yet another open source NoSQL database
that’s making heads turn is Redis. It’s a simple database
that employs what’s known as a key-value store. Redis’
unique selling point is its stellar performance, since it
operates entirely from memory.

The popularity of open source databases can be
gauged from the DB-Engines rankings (https://
db-engines.com/en/ranking). It tracks 350 databases,
of which 172 are open source, as compared to 178
commercial systems. Between them, all types of NoSQL
databases are dominated by open source databases –
see the table, right. When you drill down inside each
category, you’ll find an open source database at the top.
Redis leads the key-value database ranking, MongoDB
tops the document database ranking, Neo4j is the most
popular graph database, InfluxDB outscores the other
time-series databases and Cassandra is the top ranking
wide column database.

This comes as no surprise to Matt Yonkovit, Chief
Experience Officer at Percona. He explains that open
source databases are popular since “the barrier for entry
for open source is extremely low – there is no need for
budget approval with free software, there are lots of
people with the right skills available, and support for these
systems is at hand for production applications. When you

are going to start a new project, having access to
enterprise-ready tools and databases to build not only a
proof of concept but also the actual applications enables
faster time to value.”

Robin Schumacher, SVP and Chief Product Officer,
DataStax, agrees: “One of the key benefits the open
source development model offers is being able to draw
on the innovative talent and efforts of everyone in the
technical community, and have their contributions rapidly
come together to form a meaningful technology that’s
open and available to anyone. Of course, the fact that
such software is free to use helps adoption.”

With the rise of widely distributed cloud apps
generating copious amounts of unstructured data, it’s
the unprecedented workload that’s fuelling the growth
of NoSQL databases designed to operate and function
efficiently at this level. But neither Robin nor Matt is
writing off relational databases just yet. Robin believes
that the relational database remains a “crucial
component in today’s infrastructure stack”. He adds
that relational databases will continue to be useful “for
applications that are centralised in nature, are best
handled by a relational data model, don’t need to scale
past singular hardware deployments, and don’t have 100
per cent uptime requirements.”

The advantages that open source databases offer over
traditional closed source, proprietary ones are twofold.
On the one hand they equip users with powerful solutions
without raiding their pockets. On the other, they enable
vendors to build a sustainable business model around
open source software. It’s a feedback loop, as the vendor
then ploughs back some of its revenue to fund the
development of the open source database.

Position Database Type Score

1 Oracle Relational, Multi-model 1321.26

2 MySQL Relational, Multi-model 1229.52

3 Microsoft SQL Server Relational, Multi-model 1090.83

4 PostgreSQL Relational, Multi-model 483.28

5 MongoDB Document 409.93

6 IBM Db2 Relational, Multi-model 174.14

7 Elasticsearch Search engine, Multi-model 148.81

8 Redis Key-value, Multi-model 144.26

9 Microsoft Access Relational 137.31

10 Cassandra Wide column 127

11 SQLite Relational 124.63

12 Splunk Search engine 85.49

13 MariaDB Relational, Multi-model 84.44

14 Hive Relational 80.87

15 Teradata Relational, Multi-model 77.83

16 Solr Search engine 59.64

17 FileMaker Relational 57.9

18 HBase Wide column 57.54

19 SAP Adaptive Server Relational 56.65

20 Amazon DynamoDB Multi-model 56.42

21 SAP HANA Relational, Multi-model 55.54

22 Neo4j Graph 48.98

