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About Presentation

e Brief Introduction in Innodb Architecture

— This area would deserve many books
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Innodb Versions

« MySQL 5.5 Current GA

— Lots of improvements compared to previous versions
« MySQL 5.6 Current development release

— Will mention some changes
 Percona Server 5.5

— Based on MySQL 5.5 with improvements
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General Architecture

» Traditional OLTP Engine

— “Emulates Oracle Architecture”
* Implemented using MySQL Storage engine API

 Row Based Storage. Row Locking. MVCC
 Data Stored in Tablespaces
* Log of changes stored in circular log files

 Data pages as pages in “Buffer Pool”
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Storage Files Layout

Physical Structure of Innodb Tabespaces and
Logs
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Innodb Tablespaces

« All data stored in Tablespaces

— Changes to these databases stored in Circular Logs

— Changes has to be reflected in tablespace before log
record is overwritten

» Single tablespace or multiple tablespace
— innodb_file per_table=1
» System information always in main tablespace

— Main tablespace can consist of many files
* They are concatenated
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Tablespace Format

» Collection of Segments
— Segment is like a “file”
 Segment is number of extents

— Typically 64 of 16K page sizes
— Smaller extents for very small objects

* First Tablespace page contains header

— Tablespace size
— Tablespace id
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Types of Segments

 Each table is Set of Indexes
— Innodb has “index organized tables”
 Each index has

— Leaf node segment
— Non Leaf node segment

» Special Segments

— Rollback Segment(s)
— Insert buffer, etc
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Innodb Log Files

« Set of log files (ib_logfile?)
— 2 log files by default. Effectively concatenated
 Log Header
— Stores information about last checkpoint
* Log is NOT organized in pages, but records
— Records aligned 512 bytes, matching disk sector
* Log record format “physiological”
— Stores Page# and operation to do on it

e Only REDO operations are stored in logs.
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Separate Undo Tablespace

« MySQL 5.6 allows to store unto tablespace in
separate set of files

— innodb_undo_directory
— innodb_undo_tablespaces
— innodb_undo_logs
* Note once you enable these options you can't
downgrade

» Offers another flexibility of using fast storage
(such as SSD)
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Innodb Threads Architecture

What threads are there and what they do
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General Thread Architecture

» Using MySQL Threads for execution
— Normally thread per connection

* Transaction executed mainly by such thread
— Little benefit from Multi-Core for single query

* innodb_thread _concurrency can be used to limit
number of executing threads

— Reduce contention
e This limit is number of threads in kernel
— Including threads doing Disk 10 or storing data in TMP

A0 C
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Helper Threads

e Main Thread

— Schedules activities — flush, purge, checkpoint, insert
buffer merge

|O Threads

— Read — multiple threads used for read ahead

— Write — multiple threads used for background writes
— Insert Buffer thread used for Insert buffer merge

— Log Thread used for flushing the log

Purge thread(s) (MySQL 5.5 and XtraDB)

Br- ‘ ' X, ()Ihe
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Memory Handling

low Innodb Allocates and Manages Memory
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Memory Allocation Basics

 Buffer Pool

— Set by innodb_buffer_pool_size
— Database cache; Insert Buffer; Locks

— Takes More memory than specified
« Extra space needed for Latches, LRU etc

« Additional Memory Pool
— Dictionary and other allocations

— innodb_additional_mem_pool_size

 Not used in newer releases
 Log Buffer (innodb log buffer size
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Disk 10

How Innodb Performs Disk |10
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Reads

 Most reads done by executing threads
 Read-Ahead performed by background threads

— Linear
— Random
— Do not count on read ahead a lot

 |Insert Buffer merge process causes reads
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Writes

« Data Writes are Background in Most cases
— As long as you can flush data fast enough you're good

« Synchronous flushes can happen if no free
buffers available

* Log Writes can by sync or async depending on
innodb_flush_log_at_trx_commit

— 1 — fsync log on transaction commit
— 0 — do not flush. Flushed in background ~ once/sec
— 2 — Flush to OS cache but do not call fsync()

 Data safe if MySQL Crashes but OS Survives



Flush List Writes

* Flushing to advance “earliest modify LSN”
— To free log space so it can be reduced
* Most of writes typically happen this way

 Number of pages to flush per cycle depended on
the load

— “innodb_adaptive flushing”
— Percona Server has more flushing modes
« See innodb_adaptive flushing_method
 |f Flushing can't keep up stalls can happen
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Example of Misbehavior

« Data fits in memory and can be modified fast
— Yet we can't flush data fast enough
e Working on solution in XtraDB

adaptive flushing, tpcc-mysql
100W,12G RAM

mmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm
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LRU Flushes

 Can happen in workloads with data sets larger
than memory

 If Innodb is unable to find clean page in 10% of
_RU list

 LRU Flushes happen in user threads

 Hard to see exact number in standard Innodb

— XtraDB adds
Innodb_buffer_pool pages LRU flushed
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LRU Flushes in MySQL 5.6

« MySQL 5.6 adds “page_cleaner” to avoid LRU
flushes in User Threads

 innodb_Iru_scan_depth=N

— Controlls how deeply page cleaner will examine Talil
of LRU for dirty pages

— Happens once per second
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Page Checksums

* Protection from corrupted data

— Bad hardware, OS Bugs, Innodb Bugs
— Are not completely replaced by Filesystem Checksums

* Checked when page is Read to Buffer Pool
 Updated when page is flushed to disk

* Can be significant overhead
— Especially for very fast storage
 Can be disabled by innodb_checksums=0
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Double Write Buffer

* Innodb log requires consistent pages for recovery

 Page write may complete partially
— Updating part of 16K and leaving the rest
* Double Write Buffer is short term page level log

 The process is.

— Write pages to double write buffer; Sync
— Write Pages to their original locations; Sync
— Pages contain tablespace id+page id
* On crash recovery pages in buffer are compared
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Direct 10 Operation

 Default IO mode for Innodb data is Buffered
« Good

— Faster flushes when no write cache
— Faster warmup on restart
— Reduce problems with inode locking on EXT3

« Bad

— Lost of effective cache memory due to double buffering
— OS Cache could be used to cache other data

— Increased tendency to swap due to IO pressure
innodb_flush.method=0 DIRECT

www.percona.com




-26-

Log IO

Log are opened in buffered mode

— Even with innodb_flush_method=0 DIRECT

— XtraDB can use O _DIRECT for logs
* innodb_flush_method=ALL_O_DIRECT
Flushed by fsync() - default or O_SYNC

Logs are often written in 512 byte blocks

— innodb_log block_size=4096 in XtraDB
Logs which fit in cache may improve performance

— Small transactions and
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Indexes

How Indexes are Implemented in Innodb
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Everything is the Index

* |Innodb tables are “Index Organized”

— PRIMARY KEY contains data instead of data pointer
 Hidden PRIMARY KEY is used if not defined (6b)

« Data is “Clustered” by PRIMARY KEY
— Data with close PK value is stored close to each other
— Clustering is within page ONLY

« Leaf and Non-Leaf nodes use separate Segments

— Makes 10O more sequential for ordered scans

* Innodb system tables SYS_TABLES and SYS_INDEXES
hold information about index “root”
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Index Structure

e Secondary Indexes refer to rows by Primary Key
— No update when row is moved to different page

* Long Primary Keys are expensive
— Increase size of all Indexes

« Random Primary Key Inserts are expensive

— Cause page splits; Fragmentation
— Make page space utilization low

* Autolncrement keys are often better than
artificial keys, UUIDs, SHA1 etc.
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Multi Versioning

Implementation of Multi Versioning and
Locking
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Multi Versioning at Glance

* Multiple versions of row exist at the same time

* Read Transaction can read old version of row,
while it is modified

— No need for locking

* Locking reads can be performed with SELECT
FOR UPDATE and LOCK IN SHARE MODE
Modifiers
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Transaction isolation Modes

« SERIALIZABLE

— Locking reads. Bypass multi versioning
« REPEATABLE-READ (default)

— Read commited data at it was on start of transaction
« READ-COMMITED

— Read commited data as it was at start of statement

« READ-UNCOMMITED
— Read non committed data as it is changing live
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Updates and Locking Reads

e Updates bypass Multi Versioning
— You can only modify row which currently exists
* Locking Read bypass multi-versioning

— Result from SELECT vs SELECT .. LOCK IN SHARE
MODE will be different

* Locking Reads are slower

— Because they have to set locks
— Can be 2x+ slower !
— SELECT FOR UPDATE has larger overhead
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Multi Version Implementaition

 The most recent row version is stored in the page

— Even before it is committed
* Previous row versions stored in undo space

— Located in System tablespace
* The number of versions stored is not limited

— Can cause system tablespace size to explode.
« Access to old versions require going through linked list

— Long transactions with many concurrent updates can
impact performance.
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Multi Versioning Indexes

* |ndexes contain pointers to all versions

— Index key 5 will point to all rows which were 5 in the
past

* |ndexes contain TRX ID

— Easy to check entry is visible
— Can use “Covering Indexes”

 Many old versions is performance problem

— Slow down accesses
— Will leave many “holes” in pages when purged
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Cleaning up the Garbage

* OIld Row and index entries need to be removed
— When they are not needed for any active transaction
« REPEATABLE READ

— Need to be able to read everything at transaction start
« READ-COMMITED

— Need to read everything at statement start

e Purge Thread(s) may be unable to keep up with intensive
updates

— Innodb “History Length” will grow high
 innodb_max_purge lag slows updates down
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Innodb Locking

How Innodb Locking Works
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Innodb Locking Basics

* Pessimistic Locking Strategy
 Graph Based Deadlock Detection

— Takes shortcut for very large lock graphs
 Row Level lock wait timeout

— innodb_lock wait_timeout
e Traditional “S” and “X" locks

* Intention locks on tables “IS” “IX”

— Restricting table operations
 Locks on Rows AND Index Records

* No Lock escalation
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Gap Locks

* |Innodb does not only locks rows but also gap between them
* Needed for consistent reads in Locking mode

— Also used by update statements
* |[nnodb has no Phantoms even in Consistent Reads

« Gap locks often cause complex deadlock situations

7 13

* “infinum”, “supremum” records define bounds of data stored
on the page

— May not correspond to actual rows stored
* Only record lock is needed for PK Update
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Lock Storage

* Innodb locks storage is pretty compact
— This is why there is no lock escalation !

* Lock space needed depends on lock location
— Locking sparse rows is more expensive

 Each Page having locks gets bitmap allocated
for it

— Bitmap holds lock information for all records on the
page
* Locks typically take 3-8 bits per locked row
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Auto Increment Locks

* Major Changes in MySQL 5.1!

« MySQL 5.0 and before
— Table level AUTO_INC lock for duration of INSERT
— Even if INSERT provided key value !
— Serious bottleneck for concurrent Inserts

« MySQL 5.1 and later
— innodb_autoinc_lock_mode — set lock behavior
— “1" - Does not hold lock for simple Inserts
— “2" - Does not hold lock in any case.

 Only works with Row level replication
www.percona.com
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Latching

Innodb Internal Locks
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Innodb Latching

* |nnodb implements its own Mutexes and RW-Locks

— For transparency not only Performance
» Latching stats shown in SHOW INNODB STATUS

OS WAIT ARRAY INFO: reservation count 13569, signal count 11421

--Thread 1152170336 has waited at ./../include/bufObuf.ic line 630 for 0.00 seconds the semaphore:
Mutex at 0x2a957858b8 created file bufObuf.c line 517, lock var 0

waiters flag 0

wait is ending

--Thread 1147709792 has waited at ./../include/bufObuf.ic line 630 for 0.00 seconds the semaphore:
Mutex at 0x2a957858b8 created file bufObuf.c line 517, lock var 0

waiters flag 0

wait is ending

Mutex spin waits 5672442, rounds 3899888, OS waits 4719

RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163
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Latching Performance

Was improving over the years

Still is problem for certain workloads

— Great improvements in MySQL 5.5,5.6 & XtaDB
— Still hotspots remain

innodb_thread_concurrency

— Limiting concurrency can reduce contention
— Introduces contention on its own

innodb_sync_spin_loops
— Trade Spinning for context switching

— Typically limited production impact
www.percona.com
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Page Replacement

Page Replacement Flushing and
Checkpointing
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Basic Page Replacement

* Innodb uses LRU for page replacement
— With Midpoint Insertion
* Innodb Plugin and XtraDB configure

— innodb_old_blocks pct, innodb_old blocks time
— Offers Scan resistance from large full table scans

 Scan LRU Tail to find clean block for replacement

* May schedule synchronous flush if no clean pages
for replacement
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Checkpointing

 Fuzzy Checkpointing
— Flush few pages to advance min unflushed LSN

— Flush List is maintained in this order
« MySQL 5.1 often has “hiccups”

— No more space left in log files. Need to wait for flush to
complete

 Percona Patches for 5.0 and XtraDB
— Adaptive checkpointing: innodb_adaptive_checkpoint
* |Innodb Plugin innodb_adaptive flushing

— Best behavior depends on worload
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MySQL Conference & Expo 2012
Presented by Percona Live

The Hyatt Regency Santa Clara & Santa Clara
Convention Center

April 10th-12th, 2012

Featured Speakers

Mark Callaghan (Facebook), Jeremy Zawodny (Craigslist), Marten Mickos
(Eucalyptus Systems)

Sarah Novotny (Blue Gecko), Peter Zaitsev (Percona), Baron Schwartz (Percona)
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Want More MySQL Training?

Percona Training in Washington DC Next Week
January 16th-19th, 2012

MySQL Workshops

MySQL Developers Training - Monday

MySQL DBA Training - Tuesday
MySQL InnoDB / XtraDB - Wednesday

MySQL Operations — Thursday

Use Discount code DCPL30 to save 30%
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Upcoming Percona MySQL Training

Washington, DC — January 16, 2012
Vancouver, Canada - February 6, 2012
Frankfurt, Germany - February 13, 2012

Irvine, CA — February 14, 2012
Denver, CO - February 20, 2012
San Francisco, CA - March 12, 2012
Austin, TX - March 19, 2012

Visit http://percona.com/training
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