OPERCONA

Innodb Architecture and Internals

Peter Zaitsev
Percona Live, Washington DC
11 January 2012



About Presentation

e Brief Introduction in Innodb Architecture

— This area would deserve many books

WWW.percona.com



Innodb Versions

« MySQL 5.5 Current GA

— Lots of improvements compared to previous versions
« MySQL 5.6 Current development release

— Will mention some changes
 Percona Server 5.5

— Based on MySQL 5.5 with improvements

www.percona.com



General Architecture

» Traditional OLTP Engine

— “Emulates Oracle Architecture”
* Implemented using MySQL Storage engine API

 Row Based Storage. Row Locking. MVCC
 Data Stored in Tablespaces
* Log of changes stored in circular log files

 Data pages as pages in “Buffer Pool”

www.percona.com



Storage Files Layout

Physical Structure of Innodb Tabespaces and
Logs

WWW.percona.com



Innodb Tablespaces

« All data stored in Tablespaces

— Changes to these databases stored in Circular Logs

— Changes has to be reflected in tablespace before log
record is overwritten

» Single tablespace or multiple tablespace
— innodb_file per_table=1
» System information always in main tablespace

— Main tablespace can consist of many files
* They are concatenated

www.percona.com



Tablespace Format

» Collection of Segments
— Segment is like a “file”
 Segment is number of extents

— Typically 64 of 16K page sizes
— Smaller extents for very small objects

* First Tablespace page contains header

— Tablespace size
— Tablespace id

www.percona.com



Types of Segments

 Each table is Set of Indexes
— Innodb has “index organized tables”
 Each index has

— Leaf node segment
— Non Leaf node segment

» Special Segments

— Rollback Segment(s)
— Insert buffer, etc

www.percona.com



Innodb Log Files

« Set of log files (ib_logfile?)
— 2 log files by default. Effectively concatenated
 Log Header
— Stores information about last checkpoint
* Log is NOT organized in pages, but records
— Records aligned 512 bytes, matching disk sector
* Log record format “physiological”
— Stores Page# and operation to do on it

e Only REDO operations are stored in logs.
www.percona.com



Separate Undo Tablespace

« MySQL 5.6 allows to store unto tablespace in
separate set of files

— innodb_undo_directory
— innodb_undo_tablespaces
— innodb_undo_logs
* Note once you enable these options you can't
downgrade

» Offers another flexibility of using fast storage
(such as SSD)

www.percona.com



-11-

Innodb Threads Architecture

What threads are there and what they do

WWW.percona.com



-12-

General Thread Architecture

» Using MySQL Threads for execution
— Normally thread per connection

* Transaction executed mainly by such thread
— Little benefit from Multi-Core for single query

* innodb_thread _concurrency can be used to limit
number of executing threads

— Reduce contention
e This limit is number of threads in kernel
— Including threads doing Disk 10 or storing data in TMP

A0 C
www.percona.com



-13-

Helper Threads

e Main Thread

— Schedules activities — flush, purge, checkpoint, insert
buffer merge

|O Threads

— Read — multiple threads used for read ahead

— Write — multiple threads used for background writes
— Insert Buffer thread used for Insert buffer merge

— Log Thread used for flushing the log

Purge thread(s) (MySQL 5.5 and XtraDB)

Br- ‘ ' X, ()Ihe

www.percona.com



-14-

Memory Handling

low Innodb Allocates and Manages Memory

WWW.percona.com



-15-

Memory Allocation Basics

 Buffer Pool

— Set by innodb_buffer_pool_size
— Database cache; Insert Buffer; Locks

— Takes More memory than specified
« Extra space needed for Latches, LRU etc

« Additional Memory Pool
— Dictionary and other allocations

— innodb_additional_mem_pool_size

 Not used in newer releases
 Log Buffer (innodb log buffer size

www.percona.com




-16-

Disk 10

How Innodb Performs Disk |10

WWW.percona.com



17-

Reads

 Most reads done by executing threads
 Read-Ahead performed by background threads

— Linear
— Random
— Do not count on read ahead a lot

 |Insert Buffer merge process causes reads

www.percona.com



-18-

Writes

« Data Writes are Background in Most cases
— As long as you can flush data fast enough you're good

« Synchronous flushes can happen if no free
buffers available

* Log Writes can by sync or async depending on
innodb_flush_log_at_trx_commit

— 1 — fsync log on transaction commit
— 0 — do not flush. Flushed in background ~ once/sec
— 2 — Flush to OS cache but do not call fsync()

 Data safe if MySQL Crashes but OS Survives



Flush List Writes

* Flushing to advance “earliest modify LSN”
— To free log space so it can be reduced
* Most of writes typically happen this way

 Number of pages to flush per cycle depended on
the load

— “innodb_adaptive flushing”
— Percona Server has more flushing modes
« See innodb_adaptive flushing_method
 |f Flushing can't keep up stalls can happen

www.percona.com



Example of Misbehavior

« Data fits in memory and can be modified fast
— Yet we can't flush data fast enough
e Working on solution in XtraDB

adaptive flushing, tpcc-mysql
100W,12G RAM

mmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm
HHHHHHHHHHHHHHHHHH

WWW.percona.com




LRU Flushes

 Can happen in workloads with data sets larger
than memory

 If Innodb is unable to find clean page in 10% of
_RU list

 LRU Flushes happen in user threads

 Hard to see exact number in standard Innodb

— XtraDB adds
Innodb_buffer_pool pages LRU flushed

www.percona.com



LRU Flushes in MySQL 5.6

« MySQL 5.6 adds “page_cleaner” to avoid LRU
flushes in User Threads

 innodb_Iru_scan_depth=N

— Controlls how deeply page cleaner will examine Talil
of LRU for dirty pages

— Happens once per second

www.percona.com



-23-

Page Checksums

* Protection from corrupted data

— Bad hardware, OS Bugs, Innodb Bugs
— Are not completely replaced by Filesystem Checksums

* Checked when page is Read to Buffer Pool
 Updated when page is flushed to disk

* Can be significant overhead
— Especially for very fast storage
 Can be disabled by innodb_checksums=0

www.percona.com



-24-

Double Write Buffer

* Innodb log requires consistent pages for recovery

 Page write may complete partially
— Updating part of 16K and leaving the rest
* Double Write Buffer is short term page level log

 The process is.

— Write pages to double write buffer; Sync
— Write Pages to their original locations; Sync
— Pages contain tablespace id+page id
* On crash recovery pages in buffer are compared

www.percona.com



-25-

Direct 10 Operation

 Default IO mode for Innodb data is Buffered
« Good

— Faster flushes when no write cache
— Faster warmup on restart
— Reduce problems with inode locking on EXT3

« Bad

— Lost of effective cache memory due to double buffering
— OS Cache could be used to cache other data

— Increased tendency to swap due to IO pressure
innodb_flush.method=0 DIRECT

www.percona.com




-26-

Log IO

Log are opened in buffered mode

— Even with innodb_flush_method=0 DIRECT

— XtraDB can use O _DIRECT for logs
* innodb_flush_method=ALL_O_DIRECT
Flushed by fsync() - default or O_SYNC

Logs are often written in 512 byte blocks

— innodb_log block_size=4096 in XtraDB
Logs which fit in cache may improve performance

— Small transactions and

www.percona.com




-27-

Indexes

How Indexes are Implemented in Innodb

WWW.percona.com



-28-

Everything is the Index

* |Innodb tables are “Index Organized”

— PRIMARY KEY contains data instead of data pointer
 Hidden PRIMARY KEY is used if not defined (6b)

« Data is “Clustered” by PRIMARY KEY
— Data with close PK value is stored close to each other
— Clustering is within page ONLY

« Leaf and Non-Leaf nodes use separate Segments

— Makes 10O more sequential for ordered scans

* Innodb system tables SYS_TABLES and SYS_INDEXES
hold information about index “root”

www.percona.com



-29-

Index Structure

e Secondary Indexes refer to rows by Primary Key
— No update when row is moved to different page

* Long Primary Keys are expensive
— Increase size of all Indexes

« Random Primary Key Inserts are expensive

— Cause page splits; Fragmentation
— Make page space utilization low

* Autolncrement keys are often better than
artificial keys, UUIDs, SHA1 etc.

www.percona.com



-30-

Multi Versioning

Implementation of Multi Versioning and
Locking

WWW.percona.com



-31-

Multi Versioning at Glance

* Multiple versions of row exist at the same time

* Read Transaction can read old version of row,
while it is modified

— No need for locking

* Locking reads can be performed with SELECT
FOR UPDATE and LOCK IN SHARE MODE
Modifiers

www.percona.com



-32-

Transaction isolation Modes

« SERIALIZABLE

— Locking reads. Bypass multi versioning
« REPEATABLE-READ (default)

— Read commited data at it was on start of transaction
« READ-COMMITED

— Read commited data as it was at start of statement

« READ-UNCOMMITED
— Read non committed data as it is changing live

www.percona.com



-33-

Updates and Locking Reads

e Updates bypass Multi Versioning
— You can only modify row which currently exists
* Locking Read bypass multi-versioning

— Result from SELECT vs SELECT .. LOCK IN SHARE
MODE will be different

* Locking Reads are slower

— Because they have to set locks
— Can be 2x+ slower !
— SELECT FOR UPDATE has larger overhead

www.percona.com



-34-

Multi Version Implementaition

 The most recent row version is stored in the page

— Even before it is committed
* Previous row versions stored in undo space

— Located in System tablespace
* The number of versions stored is not limited

— Can cause system tablespace size to explode.
« Access to old versions require going through linked list

— Long transactions with many concurrent updates can
impact performance.

www.percona.com



-35-

Multi Versioning Indexes

* |ndexes contain pointers to all versions

— Index key 5 will point to all rows which were 5 in the
past

* |ndexes contain TRX ID

— Easy to check entry is visible
— Can use “Covering Indexes”

 Many old versions is performance problem

— Slow down accesses
— Will leave many “holes” in pages when purged

www.percona.com



-30-

Cleaning up the Garbage

* OIld Row and index entries need to be removed
— When they are not needed for any active transaction
« REPEATABLE READ

— Need to be able to read everything at transaction start
« READ-COMMITED

— Need to read everything at statement start

e Purge Thread(s) may be unable to keep up with intensive
updates

— Innodb “History Length” will grow high
 innodb_max_purge lag slows updates down

www.percona.com



-37-

Innodb Locking

How Innodb Locking Works

WWW.percona.com



-38-

Innodb Locking Basics

* Pessimistic Locking Strategy
 Graph Based Deadlock Detection

— Takes shortcut for very large lock graphs
 Row Level lock wait timeout

— innodb_lock wait_timeout
e Traditional “S” and “X" locks

* Intention locks on tables “IS” “IX”

— Restricting table operations
 Locks on Rows AND Index Records

* No Lock escalation

www.percona.com



-30-

Gap Locks

* |Innodb does not only locks rows but also gap between them
* Needed for consistent reads in Locking mode

— Also used by update statements
* |[nnodb has no Phantoms even in Consistent Reads

« Gap locks often cause complex deadlock situations

7 13

* “infinum”, “supremum” records define bounds of data stored
on the page

— May not correspond to actual rows stored
* Only record lock is needed for PK Update

www.percona.com



-40-

Lock Storage

* Innodb locks storage is pretty compact
— This is why there is no lock escalation !

* Lock space needed depends on lock location
— Locking sparse rows is more expensive

 Each Page having locks gets bitmap allocated
for it

— Bitmap holds lock information for all records on the
page
* Locks typically take 3-8 bits per locked row

www.percona.com



-41-

Auto Increment Locks

* Major Changes in MySQL 5.1!

« MySQL 5.0 and before
— Table level AUTO_INC lock for duration of INSERT
— Even if INSERT provided key value !
— Serious bottleneck for concurrent Inserts

« MySQL 5.1 and later
— innodb_autoinc_lock_mode — set lock behavior
— “1" - Does not hold lock for simple Inserts
— “2" - Does not hold lock in any case.

 Only works with Row level replication
www.percona.com



-42-

Latching

Innodb Internal Locks

WWW.percona.com



-43-

Innodb Latching

* |nnodb implements its own Mutexes and RW-Locks

— For transparency not only Performance
» Latching stats shown in SHOW INNODB STATUS

OS WAIT ARRAY INFO: reservation count 13569, signal count 11421

--Thread 1152170336 has waited at ./../include/bufObuf.ic line 630 for 0.00 seconds the semaphore:
Mutex at 0x2a957858b8 created file bufObuf.c line 517, lock var 0

waiters flag 0

wait is ending

--Thread 1147709792 has waited at ./../include/bufObuf.ic line 630 for 0.00 seconds the semaphore:
Mutex at 0x2a957858b8 created file bufObuf.c line 517, lock var 0

waiters flag 0

wait is ending

Mutex spin waits 5672442, rounds 3899888, OS waits 4719

RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163

www.percona.com



-44-

Latching Performance

Was improving over the years

Still is problem for certain workloads

— Great improvements in MySQL 5.5,5.6 & XtaDB
— Still hotspots remain

innodb_thread_concurrency

— Limiting concurrency can reduce contention
— Introduces contention on its own

innodb_sync_spin_loops
— Trade Spinning for context switching

— Typically limited production impact
www.percona.com



-45-

Page Replacement

Page Replacement Flushing and
Checkpointing

WWW.percona.com



-46-

Basic Page Replacement

* Innodb uses LRU for page replacement
— With Midpoint Insertion
* Innodb Plugin and XtraDB configure

— innodb_old_blocks pct, innodb_old blocks time
— Offers Scan resistance from large full table scans

 Scan LRU Tail to find clean block for replacement

* May schedule synchronous flush if no clean pages
for replacement

www.percona.com



47-

Checkpointing

 Fuzzy Checkpointing
— Flush few pages to advance min unflushed LSN

— Flush List is maintained in this order
« MySQL 5.1 often has “hiccups”

— No more space left in log files. Need to wait for flush to
complete

 Percona Patches for 5.0 and XtraDB
— Adaptive checkpointing: innodb_adaptive_checkpoint
* |Innodb Plugin innodb_adaptive flushing

— Best behavior depends on worload

www.percona.com



Percona Live DC Sponsors

Media Sponsor

rubynation

Friends of Percona Sponsor
®e
.‘t,...
% Webyog

. VO Y
(Y Dyn = £ Customink OmniTl

vmware

www.percona.com



MySQL Conference & Expo 2012
Presented by Percona Live

The Hyatt Regency Santa Clara & Santa Clara
Convention Center

April 10th-12th, 2012

Featured Speakers

Mark Callaghan (Facebook), Jeremy Zawodny (Craigslist), Marten Mickos
(Eucalyptus Systems)

Sarah Novotny (Blue Gecko), Peter Zaitsev (Percona), Baron Schwartz (Percona)

WWW.percona.com



Want More MySQL Training?

Percona Training in Washington DC Next Week
January 16th-19th, 2012

MySQL Workshops

MySQL Developers Training - Monday

MySQL DBA Training - Tuesday
MySQL InnoDB / XtraDB - Wednesday

MySQL Operations — Thursday

Use Discount code DCPL30 to save 30%

WWW.percona.com



Upcoming Percona MySQL Training

Washington, DC — January 16, 2012
Vancouver, Canada - February 6, 2012
Frankfurt, Germany - February 13, 2012

Irvine, CA — February 14, 2012
Denver, CO - February 20, 2012
San Francisco, CA - March 12, 2012
Austin, TX - March 19, 2012

Visit http://percona.com/training

WWW.percona.com



ive MySQL Conference,

www.percona.com/live




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

