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About Presentation

● Brief Introduction in Innodb Architecture

– This area would deserve many books
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Innodb Versions

● MySQL 5.5 Current GA

– Lots of improvements compared to previous versions

● MySQL 5.6 Current development release

– Will mention some changes

● Percona Server 5.5

– Based on MySQL 5.5 with improvements
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General Architecture

● Traditional OLTP Engine

– “Emulates Oracle Architecture”

● Implemented using MySQL Storage engine API
● Row Based Storage. Row Locking. MVCC
● Data Stored in Tablespaces
● Log of changes stored in circular log files
● Data pages as pages in “Buffer Pool”
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Storage Files Layout

Physical Structure of Innodb Tabespaces and 
Logs
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Innodb Tablespaces

● All data stored in Tablespaces

– Changes to these databases stored in Circular Logs

– Changes has to be reflected in tablespace before log 
record is overwritten

● Single tablespace or multiple tablespace

– innodb_file_per_table=1

● System information always in main tablespace

– Main tablespace can consist of many files

• They are concatenated
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Tablespace Format

● Collection of Segments

– Segment is like a “file”

● Segment is number of extents

– Typically 64 of 16K page sizes

– Smaller extents for very small objects

● First Tablespace page contains header

– Tablespace size

– Tablespace id 

-7-



www.percona.com

Types of Segments

● Each table is Set of Indexes

– Innodb has “index organized tables”

● Each index has

– Leaf node segment

– Non Leaf node segment

● Special Segments

– Rollback Segment(s)

– Insert buffer, etc
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Innodb Log Files

● Set of log files (ib_logfile?)

– 2 log files by default. Effectively concatenated 

● Log Header

– Stores information about last checkpoint

● Log is NOT organized in pages, but records

– Records aligned 512 bytes, matching disk sector

● Log record format “physiological”

– Stores Page# and operation to do on it

● Only REDO operations are stored in logs.
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Separate Undo Tablespace

● MySQL 5.6 allows to store unto tablespace in 
separate set of files

– innodb_undo_directory 

– innodb_undo_tablespaces

– innodb_undo_logs

● Note once you enable these options you can't 
downgrade

● Offers another flexibility of using fast storage 
(such as SSD)
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Innodb Threads Architecture

What threads are there and what they do
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General Thread Architecture

● Using MySQL Threads for execution

– Normally thread per connection

● Transaction executed mainly by such thread

– Little benefit from Multi-Core for single query

● innodb_thread_concurrency can be used to limit 
number of executing threads

– Reduce contention

● This limit is number of threads in kernel

– Including threads doing Disk IO or storing data in TMP 
Table.
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Helper Threads

● Main Thread

– Schedules activities – flush, purge, checkpoint, insert 
buffer merge

● IO Threads

– Read – multiple threads used for read ahead 

– Write – multiple threads used for background writes

– Insert Buffer thread used for Insert buffer merge

– Log Thread used for flushing the log

● Purge thread(s) (MySQL 5.5 and XtraDB)
● Deadlock detection thread & Others
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Memory Handling

How Innodb Allocates and Manages Memory
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Memory Allocation Basics

● Buffer Pool

– Set by innodb_buffer_pool_size

– Database cache; Insert Buffer; Locks

– Takes More memory than specified

• Extra space needed for Latches, LRU etc

● Additional Memory Pool

– Dictionary and other allocations

– innodb_additional_mem_pool_size

• Not used in newer releases

● Log Buffer (innodb_log_buffer_size)
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Disk IO

How Innodb Performs Disk IO
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Reads

● Most reads done by executing threads
● Read-Ahead performed by background threads

– Linear

– Random  

– Do not count on read ahead a lot 

● Insert Buffer merge process causes reads
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Writes

● Data Writes are Background in Most cases

– As long as you can flush data fast enough you're good

● Synchronous flushes can happen if no free 
buffers available

● Log Writes can by sync or async depending on 
innodb_flush_log_at_trx_commit

– 1 – fsync log on transaction commit

– 0 – do not flush. Flushed in background ~ once/sec

– 2 – Flush to OS cache but do not call fsync()
• Data safe if MySQL Crashes but OS Survives 
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Flush List Writes

● Flushing to advance “earliest modify LSN”

– To free log space so it can be reduced

● Most of writes typically happen this way 
● Number of pages to flush per cycle depended on 

the load

– “innodb_adaptive_flushing”

– Percona Server has more flushing modes

• See innodb_adaptive_flushing_method 

● If Flushing can't keep up stalls can happen
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Example of Misbehavior

● Data fits in memory and can be modified fast

– Yet we can't flush data fast enough

● Working on solution in XtraDB
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LRU Flushes

● Can happen in workloads with data sets larger 
than memory

● If Innodb is unable to find clean page in 10% of 
LRU list

● LRU Flushes happen in user threads
● Hard to see exact number in standard Innodb

– XtraDB adds 
Innodb_buffer_pool_pages_LRU_flushed
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LRU Flushes in MySQL 5.6

● MySQL 5.6 adds “page_cleaner” to avoid LRU 
flushes in User Threads

● innodb_lru_scan_depth=N

– Controlls how deeply page cleaner will examine Tail 
of LRU for dirty pages

– Happens once per second
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Page Checksums

● Protection from corrupted data

– Bad hardware, OS Bugs, Innodb Bugs 

– Are not completely replaced by Filesystem Checksums

● Checked when page is Read to Buffer Pool
● Updated when page is flushed to disk
● Can be significant overhead

– Especially for very fast storage

● Can be disabled by  innodb_checksums=0
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Double Write Buffer

● Innodb log requires consistent pages for recovery
● Page write may complete partially

– Updating part of 16K and leaving the rest 

●  Double Write Buffer is short term page level log
● The process is:

– Write pages to double write buffer; Sync

– Write Pages to their original locations; Sync

– Pages contain tablespace_id+page_id

● On crash recovery pages in buffer are compared 
to their original location
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Direct IO Operation

● Default IO mode for Innodb data is Buffered
● Good

– Faster flushes when no write cache

– Faster warmup on restart

– Reduce problems with inode locking on EXT3

● Bad
– Lost of effective cache memory due to double buffering

– OS Cache could be used to cache other data

– Increased tendency to swap due to IO pressure
● innodb_flush_method=O_DIRECT

-25-



www.percona.com

Log IO

● Log are  opened in buffered mode 

– Even with innodb_flush_method=O_DIRECT

– XtraDB can use O_DIRECT for logs
• innodb_flush_method=ALL_O_DIRECT

● Flushed by fsync() - default or O_SYNC

● Logs are often written in 512 byte blocks 

– innodb_log_block_size=4096 in XtraDB
● Logs which fit in cache may improve performance

– Small transactions and 
innodb_flush_log_at_trx_commit=1 or 2
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Indexes

How Indexes are Implemented in Innodb
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Everything is the Index

● Innodb tables are “Index Organized”

– PRIMARY KEY contains data instead of data pointer
● Hidden PRIMARY KEY is used if not defined (6b) 

● Data is “Clustered” by PRIMARY KEY

– Data with close PK value is stored close to each other

– Clustering is within page ONLY
● Leaf and Non-Leaf nodes use separate Segments

– Makes IO more sequential for ordered scans
● Innodb system tables SYS_TABLES and SYS_INDEXES 

hold information about index “root” 
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Index Structure

● Secondary Indexes refer to rows by Primary Key

– No  update when row is moved to different page

● Long Primary Keys are expensive

– Increase size of all Indexes

● Random Primary Key Inserts are expensive

– Cause page splits; Fragmentation

– Make page space utilization low

● AutoIncrement keys are often better than 
artificial keys, UUIDs, SHA1 etc.
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Multi Versioning

Implementation of Multi Versioning and 
Locking
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Multi Versioning at Glance

● Multiple versions of row exist at the same time
● Read Transaction can read old version of row, 

while it is modified

– No need for locking

● Locking reads can be performed with SELECT 
FOR UPDATE and LOCK IN SHARE MODE 
Modifiers
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Transaction isolation Modes

● SERIALIZABLE

– Locking reads. Bypass multi versioning

● REPEATABLE-READ  (default)

– Read commited data at it was on start of transaction

● READ-COMMITED

– Read  commited data as it was at start of statement 

● READ-UNCOMMITED

– Read non committed data as it is changing live
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Updates and Locking Reads

● Updates bypass Multi Versioning

– You can only modify row which currently exists

● Locking Read bypass multi-versioning

– Result from SELECT vs SELECT .. LOCK IN SHARE 
MODE will be different

● Locking Reads are slower

– Because they have to set locks

– Can be 2x+ slower !

– SELECT FOR UPDATE has larger overhead 
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Multi Version Implementaition

● The most recent row version is stored in the page

– Even before it is committed
● Previous row versions stored in undo space

– Located in System tablespace
● The number of versions stored is not limited

– Can cause system tablespace size to explode.
● Access to old versions require going through linked list

– Long transactions with many concurrent updates can 
impact performance.
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Multi Versioning Indexes

● Indexes contain pointers to all versions

– Index key 5 will point to all rows which were 5 in the 
past

● Indexes contain TRX_ID

– Easy to check entry is visible

– Can use “Covering Indexes”

● Many old versions is performance problem

– Slow down accesses

– Will leave many “holes” in pages when purged  
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Cleaning up the Garbage

● Old Row and index entries need to be removed

– When they are not needed for any active transaction
● REPEATABLE READ

– Need to be able to read everything at transaction start
● READ-COMMITED

– Need to read everything at statement start
● Purge Thread(s) may be unable to keep up with intensive 

updates

– Innodb “History Length” will grow high
● innodb_max_purge_lag   slows updates down

– Not very reliable
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Innodb Locking

How Innodb Locking Works
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Innodb Locking Basics

● Pessimistic Locking Strategy

● Graph Based Deadlock Detection

– Takes shortcut for very large lock graphs
● Row Level lock wait timeout

– innodb_lock_wait_timeout
● Traditional “S” and “X” locks 

● Intention locks on tables  “IS” “IX”

– Restricting table operations
● Locks on Rows AND Index Records

● No Lock escalation 
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Gap Locks

● Innodb does not only locks rows but also gap between them

● Needed for consistent reads in Locking mode

– Also used by update statements
● Innodb has no Phantoms even in Consistent Reads

● Gap locks often cause complex deadlock situations

● “infinum”, “supremum” records define bounds of data stored 
on the page

– May not correspond to actual rows stored
● Only record lock is needed for PK Update
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Lock Storage

● Innodb locks storage is pretty compact

– This is why there is no lock escalation !

● Lock space needed depends on lock location

– Locking sparse rows is more expensive 

● Each Page having locks gets bitmap allocated 
for it

– Bitmap holds lock information for all records on the 
page

● Locks typically take 3-8 bits per locked row
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Auto Increment Locks

● Major Changes in MySQL 5.1 !

● MySQL 5.0 and before

– Table level AUTO_INC lock for duration of INSERT

– Even if INSERT provided key value !

– Serious bottleneck for concurrent Inserts
● MySQL 5.1 and later

– innodb_autoinc_lock_mode – set lock behavior

– “1”  - Does not hold lock for simple Inserts

– “2”  - Does not hold lock in any case.

•  Only works with Row level replication
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Latching

Innodb Internal Locks

-42-



www.percona.com

Innodb Latching

● Innodb implements its own Mutexes and RW-Locks

– For transparency not only Performance
● Latching stats shown in SHOW INNODB STATUS

      ----------
      SEMAPHORES
      ----------
      OS WAIT ARRAY INFO: reservation count 13569, signal count 11421
      --Thread 1152170336 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
      Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
      waiters flag 0
      wait is ending
      --Thread 1147709792 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
      Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
      waiters flag 0
      wait is ending
      Mutex spin waits 5672442, rounds 3899888, OS waits 4719
      RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163
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Latching Performance

● Was improving over the years

● Still is problem for certain workloads

– Great improvements in MySQL 5.5,5.6 & XtaDB

– Still hotspots remain 
● innodb_thread_concurrency

– Limiting concurrency can reduce contention

– Introduces contention on its own
● innodb_sync_spin_loops

– Trade Spinning for context switching

– Typically limited production impact
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Page Replacement 

Page Replacement Flushing and 
Checkpointing
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Basic Page Replacement

● Innodb uses LRU for page replacement

– With Midpoint Insertion

● Innodb Plugin and XtraDB configure

– innodb_old_blocks_pct, innodb_old_blocks_time 

– Offers Scan resistance from large full table scans

● Scan LRU Tail to find clean block for replacement
● May schedule synchronous flush if no clean pages 

for replacement 
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Checkpointing

● Fuzzy Checkpointing

– Flush few pages to advance min unflushed LSN

– Flush List is maintained in this order
● MySQL 5.1 often has “hiccups” 

– No more space left in log files. Need to wait for flush to 
complete

● Percona Patches for 5.0 and XtraDB

– Adaptive checkpointing:  innodb_adaptive_checkpoint
● Innodb Plugin innodb_adaptive_flushing

– Best behavior depends on worload

-47-



Media Sponsor

www.percona.com

Percona Live DC Sponsors

Friends of Percona Sponsor



www.percona.com

MySQL Conference & Expo 2012 

Presented by Percona Live

The Hyatt Regency Santa Clara & Santa Clara 
Convention Center

April 10th-12th, 2012

Featured Speakers
Mark Callaghan (Facebook), Jeremy Zawodny (Craigslist), Marten Mickos 

(Eucalyptus Systems)

Sarah Novotny (Blue Gecko), Peter Zaitsev (Percona), Baron Schwartz (Percona)

Learn More at www.percona.com/live/
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Want More MySQL Training?

Percona Training in Washington DC Next Week

January 16th-19th, 2012

MySQL Workshops
MySQL Developers Training - Monday

MySQL DBA Training - Tuesday

MySQL InnoDB / XtraDB - Wednesday

MySQL Operations – Thursday

Use Discount code DCPL30 to save 30%

Visit http://bit.ly/dc-training 
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Upcoming Percona MySQL Training

Washington, DC – January 16, 2012

Vancouver, Canada - February 6, 2012

Frankfurt, Germany - February 13, 2012

Irvine, CA – February 14, 2012

Denver, CO - February 20, 2012

San Francisco, CA - March 12, 2012

Austin, TX - March 19, 2012

Visit http://percona.com/training



  

Percona Live MySQL Conference, 
April 10-12 , Santa Clara,CA

www.percona.com/live
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