
Copyright © 2006-2014 Percona LLC

MySQL Logs
By Bill Karwin, Peter Boros,

Aleksandr Kuzminsky and Peter Zaitsev

Vol. 1

Get me some query logs! 1
Rotating MySQL slow logs safely 3
Impact of logging on MySQL's performance 5
How to find MySQL queries worth optimizing ? 10

MySQL Logs

Table of Contents

Percona was founded in August 2006 by Peter Zaitsev and Vadim
Tkachenko and now employs a global network of experts with a staff of
more than 100 people. Our customer list is large and diverse, including
Fortune 50 firms, popular websites, and small startups. We have over
1,800 customers and, although we do not reveal all of their names,
chances are we're working with every large MySQL user you've heard
about. To put Percona's MySQL expertise to work for you, please
contact us.

About Percona

Skype: oncall.percona
GTalk: oncall@percona.com
AIM (AOL Instant Messenger): oncallpercona
Telephone direct-to-engineer: +1-877-862-4316 or
UK Toll Free: +44-800-088-5561
Telephone to live operator: +1-888-488-8556
Customer portal: https://customers.percona.com/

Is this an emergency? Get immediate assistance
from Percona Support 24/7. Click here

Copyright © 2006-2014 Percona LLC

http://www.percona.com/contact/24x7-emergency

MySQL Logs
Chapter 1: Get me some query logs!

Get me some query logs!

One of my favorite tools in the Percona Toolkit is pt-query-digest. This tool is indispensable for
identifying your top SQL queries, and analyzing which queries are accounting for your database
load.

But the report you get from pt-query-digest is only as good as the log of queries you give it as input.
 You need a large enough sample of query logs, collected over a period of time when you have
representative traffic on your database.

You also need the log to include all the queries, not just those that take more than N seconds. The
reason is that some queries are individually quick, and would not be logged if you set
the long_query_time configuration variable to 1 or more seconds. You want that threshold to be 0
seconds while you’re collecting logs.

However, activating such high-volume query log collection can be costly. Every statement
executed on your database will cause file I/O, even when the query itself was served out of your
buffer pool memory. That’s a lot of overhead, so we need to be careful about how and when we
collect logs, and for how long we leave that running.

I’ve put together a simple shell script to help automate this. I have given it the functional but
unimaginative name full-slow-log.

The script configures full logging, then sleeps for a number of seconds to allow queries to be
collected in the logs. After it finishes sleeping, or if you interrupt the script, the script restores log
configuration back to the values they started with.

-v is for verbose output.
-s seconds allows you to specify the number of seconds to sleep. The default is 5
seconds, which is probably too short for most sites, but the value is chosen to be as low
impact as possible if you forget to give another value.
-c config allows you to specify a MySQL config file other than $HOME/.my.cnf, so you
can host, user, and password.

 3

By Bill Karwin

http://www.percona.com/doc/percona-toolkit/pt-query-digest.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_long_query_time

MySQL Logs
Chapter 1: Get me some query logs!

Here’s an example of running it with verbose output:

Notice that the script also redirects the slow query log to a new file, with a filename based on the
timestamp. This is so you have a distinct file that contains only the specific time range of logs you
collected.

The restoration of settings is in a “trap” which is a shell scripting feature that serves as both an exit
handler and signal handler. So if you interrupt the script before it’s done, you have some
assurance that it will do the right thing to restore settings anyway.

My full-slow-log script is now available on a Github project (along with a few other experimental
scripts I have written). See https://github.com/billkarwin/bk-tools

 4

https://github.com/billkarwin/bk-tools

MySQL Logs
Chapter 2: Rotating MySQL slow logs safely

Rotating MySQL slow logs safely

Here are a some lessons we learned when logging a high volume of queries to the slow log.

Do not use copytruncate

Logrotate offers two techniques for log rotation (your log rotation scheme likely offers similar
options with a different name):

1. copytruncate – Copies the file to a new name, and then truncates the original file.
2. no copytruncate – Uses the rename() system call to move the file to a new name, and

then expects the daemon to be signaled to reopen its log file.

MySQL has a mutex for slow log writes. Truncation can block MySQL because the OS serializes
access to the inode during the truncate operation. This problem is particularly evident when using
the ext3 file system (instead of xfs).

Use FLUSH LOGS instead of sending SIGHUP

When copytruncate is disabled, MySQL must be told to reopen the slow log file. There are two
options for signaling:

1. Send a HUP signal to the mysqld process.
2. Use the mysql console or mysqladmin utility to FLUSH LOGS;

These options should be equivalent, but MySQL bug 65481 explains that the HUP signal also
flushes tables in addition to logs. Flushing tables can impact running queries.

Disable MySQL slow logs during rotation

Flushing logs takes time. Meanwhile, queries are still being executed. To prevent MySQL from
filling the slow log buffer, we disable the MySQL slow logs temporarily during log rotation.

Putting it all together

 5

By Peter Boros

https://fedorahosted.org/logrotate/
http://www.mysqlperformanceblog.com/2007/12/09/be-careful-rotating-mysql-logs/
http://bugs.mysql.com/bug.php?id=65481

MySQL Logs
Chapter 3: Impact of logging on MySQL's performance

Impact of logging on MySQL's performance

Introduction
When people think about Percona’s microslow patch immediately a question arises how much
logging impacts on performance. When we do performance audit often we log every query to find
not only slow queries. A query may take less than a second to execute, but a huge number of such
queries may significantly load a server. On one hand logging causes sequential writes which can’t
impair performance much, on other hand when every query is logged there is a plenty of write
operations and obviously performance suffers. Let’s investigate how much.

I took DBT2, an OSDL’s implementation of TPC-C.
Hardware used
The benchmark was run on a DELL server running CentOS release 4.7 (Final)
There are four CPUs Intel(R) Xeon(R) CPU 5150 @ 2.66GHz, 32GB RAM. There are 8 disks in
RAID10(a mirror of 4+4 striped disks).
Software
It was used MySQL 5.0.75-percona-b11 on CentOS release 4.7
MySQL setting
There were two cases considered CPU- and IO-bound.
Each case had three options:

logging turned off;
logging queries which take more than a second to execute;
logging every query;

MySQL was run with default settings except following:

Depending on workload different InnoDB buffer was used.
In CPU-bound case

 6

By Aleksandr Kuzminsky

http://sourceforge.net/projects/osdldbt/
http://www.tpc.org/tpcc/default.asp
http://www.percona.com/mysql/5.0.75-b11/binary/mysql-5.0.75-percona-b11.tar.gz

MySQL Logs
Chapter 3: Impact of logging on MySQL's performance

In IO-bound case

DBT2 settings
For CPU-bound case number of warehouses was 10(1.31GiB). In case of IO-bound load — 100
warehouses which is 10GiB in terms of database size.
The test was run with 1, 20 and 100 database connections
Results
To reduce random error the test was run 3 times per each parameter set.
The metric of a DBT2 test is NOTPM (New Order Transaction per Minute) the more the better.

CPU-bound case – 10 warehouses

 7

We see here that logging all queries decreases MySQL’s performance on 6-20% depending on a
number of connections to a database.

It should be noted during the test it was executed roughly 20-25k queries per second. If all queries
are logged — a slow log is populated at rate about 10MB/sec. This is the highest rate observed.
IO-bound case’s 100 warehouses

MySQL Logs
Chapter 3: Impact of logging on MySQL's performance

In this case every test was run 5 times and random measurement error was calculated. As it is
seen from the chart above the performance almost doesn’t depend on logging — the difference
doesn’t exceed the measurement error.

The query rate in this case is about 1000 per second.

Logging to /dev/null

It is interesting to know how much from performance degradation caused by the microslow patch
itself. Let’s do the same tests but logging to /dev/null.

 8

Please proceed to the next page

http://www.mysqlperformanceblog.com/wp-content/uploads/2009/02/io-bound-case-100-warehouses-perfomace-vs-logging.png

MySQL Logs
Chapter 3: Impact of logging on MySQL's performance

Conclusion
From the all tests above there are two conclusions can be made:

1. It is safe to log slow queries with execution time bigger than a second without worry about
performance impact in case of CPU-bound workload. The performance impact is negligibly
small in IO-bound workload even if all queries are logged.

2. In general logging all queries can hurt MySQL and you should consider the load while using
it, especially in CPU-bound case.

 9

http://www.mysqlperformanceblog.com/wp-content/uploads/2009/02/cpu-bound-case-10-warehouses-logging-to-dev-null-perfomace-vs-logging.png

MySQL Logs
Chapter 4: How to find MySQL queries worth optimizing ?

How to find MySQL queries worth optimizing?

One question I often get is how one can find out queries which should be optimized. By looking at
pt-query-digest report it is easy to find slow queries or queries which cause the large portion of the
load on the system but how do we know whenever there is any possibility to make this query run
better ? The full answer to this question will indeed require complex analyses as there are many
possible ways query can be optimized. There is however one extremely helpful metric which you
can use – ratio between rows sent and rows analyzed. Lets look at this example:

The query in this case has sent zero rows (as there are no matches) but it had to examine 10Mil
rows to produce result. What would be good scenario ? – query examining same amount of rows
as they end up sending. In this case if I index the table I get the following record in the slow query
log:

 10

By Peter Zaitsev

Rows_examined=0 same as Rows_sent meaning this query is optimized quite well. Note you may
be thinking in this case there is no database access happening at all – you would be wrong. The
index lookup is being perform but as only actual rows which are found and returned up to the top
level MySQL part for processing are counted the Rows_examined remains zero.

It looks simple so far but it also a huge oversimplification. You can do such simple math only to the
queries without aggregate functions/group by and only to ones which examine one table only. What
is about queries which query more than one table?

MySQL Logs
Chapter 4: How to find MySQL queries worth optimizing ?

In this case we actually join 2 tables but because the access type to the tables is “const” MySQL
does not count it as access to two tables. In case of “real” access to the data it will:

 11

In this case we have 2 rows analyzed for each row set which is expected as we have 2 (logical)

tables used in the query. This rule also does not work if you have any group by in the query:

MySQL Logs
Chapter 4: How to find MySQL queries worth optimizing ?

This only sends 2 rows while scanning 10 million, while we can’t really optimize this query in a
simple way because scanning all that rows are actually needed to produce group by results.
What you can think about in this case is removing group by and aggregate functions. Then query
would become “select * from sbtest” which would send all 10M rows and hence there is no ways
to simply optimize it.

This method does not only provide you with “yes or no” answer but rather helps to understand
how much optimization is possible. For example I might have query which uses some index scans
1000 rows and sends 10… I still might have opportunity to reduce amount of rows it scans 100x, for
example by adding combined index.

So what is the easy way to see if query is worth optimizing ?
- see how many rows query sends after group by, distinct and aggregate functions are removed (A)
- look at number of rows examined divided by number of tables in join (B)
- if B is less or equals to A your query is “perfect”
- if B/A is 10x or more this query is a very serious candidate for optimization.

This is simple method and it can be used with pt-query-digest very well as it reports not only
average numbers but also the outliers.

Powered by TCPDF (www.tcpdf.org)

 12

Visit the Percona library for more free MySQL eBook selections
http://www.percona.com/resources/mysql-ebooks

http://www.tcpdf.org
http://www.percona.com/resources/mysql-ebooks

About the authors

Copyright © 2006-2014 Percona LLC

Bill Karwin, Percona's Senior Knowledge Manager, has been a software engineer for over
20 years, developing and supporting applications, libraries and servers such as Zend
Framework for PHP 5, the InterBase relational database, and the Enhydra Java application
server. Throughout his career, Bill has shared his knowledge to help other programmers
achieve success and productivity. Bill has answered thousands of questions, giving him a
unique perspective on SQL mistakes that most commonly cause problems. He authored the
book "SQL Antipatterns," collecting frequent blunders and showing better solutions.

Peter Boros joined Percona's European consulting team in May 2012. Before joining
Percona, among many other things, he worked at Sun Microsystems, specialized there in
performance tuning and was a DBA at Hungary's largest social networking site. He also
taught many Oracle University MySQL courses. He has been using and working with open
source software from early 2000s. Peter's first and foremost professional interest is
performance tuning. He currently lives in Budapest, Hungary with his wife and son.

Aleksandr Kuzminsky is highly experienced in a variety of different Unix variants and network
services, as well as in Operational Support Systems and Business Support Systems (OSS/
BSS) development. Prior to joining Percona, he taught Cisco courses and built multi-service
Multiprotocol Label Switching (MPLS) networks in Ukraine and in the Caucasian countries.
At Percona, he specializes in InnoDB and MyISAM data recovery. Aleksandr lives with his
family in the suburbs of Kiev. He enjoys playing with his young son and gardening.

Peter Zaitsev, Percona's CEO and founder, is arguably the world's foremost expert in
MySQL performance and scaling, with a special expertise in hardware and database
internals. Peter's work has contributed to dozens of MySQL appliances, storage engines,
replication systems, and other technologies. Peter co-authored High Performance MySQL
along with two other Percona experts. He is a frequently invited guest at open source
conferences, and has been a sell-out speaker at the yearly MySQL User Conference since
its inception. Peter currently lives in North Carolina with his wife and their two children.

http://www.amazon.com/High-Performance-MySQL-Optimization-Replication/dp/1449314287

	Table of Contents
	MySQL Logs
	Get me some query logs!
	Rotating MySQL slow logs safely
	Impact of logging on MySQL's performance
	How to find MySQL queries worth optimizing ?

	About the Authors

