Replication: What's new in MySQL 8

Tiago Jorge
Senior Software Engineer
MySQL Replication

Luís Soares
Software Development Director
MySQL Replication
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Program Agenda
Program Agenda

1. Introduction
2. Use Cases
3. Enhancements in MySQL 8 (and 5.7)
4. Roadmap
5. Conclusion
Introduction
Boom

Web Explodes
Today...

– Technology mesh.
– All things distributed.
– Large amounts of data to handle, transform, store.
– Offline periods are horribly expensive, simply unaffordable.
– Go green requires dynamic and adaptative behavior.
– Much more data to store – e.g. social media, “Look at all of my pictures!”;
 Monitoring – Keeping logs for N years! ; IoT – and much more.
– Moving, transforming and processing data quicker than anyone else means
 having an edge over competitors.
– It is a zoo. Distributed coordination and monitoring is key.
Database Replication

Replication

“The process of generating and reproducing multiple copies of data at one or more sites.”

MySQL Database Replication: Overview
MySQL Database Replication: Overview

- **App** sends data to **Server A**.
- **Server A** captures statements or data changes.
- **Server A** sends data to the **relay log**.
- **relay log** updates the **binary log** on **Server B**.
- **Server B** applies the updates to the **binary log**.
- **Receiver** handles *ACK, NACK, Heartbeating, ...*
- **Applier** handles *Meta-data Update*

Persistent log buffer

Threaded applier
MySQL Database Replication: Some Notes

Binary Log

• Logical replication log recording master changes (binary log).
• Row or statement based format (may be intermixed).
• Each transaction is split into groups of events.
• Control events: Rotate, Format Description, Gtid, and more.

Layout of the Binary Log.
MySQL Database Replication: Some Notes

Coordination Between Servers

Since 3.23
asynchronous (native)

Since 5.5
semi-synchronous (plugin)

Since 5.7.17
And in MySQL 8 as of 8.0.1
group replication (plugin)
Use cases
Clustering Made Practical

Replicate
Automate
Integrate
Scale
Enhance
Replicate

Group Replication

• For highly available infrastructures where:
 – the number of servers has to grow or shrink dynamically;
 – with as little pain as possible.
Automate

Group Replication

• Single-primary mode
 – Automatic PRIMARY/SECONDARY role assignment
 – Automatic new PRIMARY election on PRIMARY failures
 – Automatic setup of read/write modes on PRIMARY and SECONDARIES
 – Automatic global consistent view of which server is the PRIMARY
Integrate Binary Log

- Logical replication log
 - Extract, transform and load.
 - MySQL fits nicely with other technologies.
Scale

Asynchronous Replication

• Replicate between clusters
 – For disaster recovery

• Read Replicas
 – For read-scale out. Deploy asynchronous read replicas connected to the cluster
Enhance
InnoDB Cluster

• **InnoDB Cluster Integrated Solution**
 – Group Replication for high availability.
 – Asynchronous Replication for Read Scale-out.
 – One-stop shell to deploy and manage the cluster.
 – Seamlessly and automatically route the workload to the proper database server in the cluster.
 – Hide failures from the application.
Enhancements in MySQL 8 (and 5.7)

3.1 Binary Log Enhancements

3.2 Operations

3.3 Performance

3.4 Monitoring

3.5 Other
New Metadata in the Binary Log
Easy to extract, transform and load into other systems.

- **New Metadata**
 - Easy to decode what is in the binary log.
 - Further facilitates connecting MySQL to other systems using the binary log stream.
 - Capturing data changes through the binary log is simplified.
 - Also more stats showing where the data is/was at a certain point in time.
3 Enhancements in MySQL 8 (and 5.7)

3.1 Binary Log Enhancements
3.2 Operations
3.3 Performance
3.4 Monitoring
3.5 Other
Multi-Source Replication Filters
Replicate, Filter, Aggregate, Query

users
bio
groups

A

only users

B

everthing
not users

C

users
posts
comments

users
bio
groups
posts
comments

Wednesday, 7th Nov 2018, Frankfurt am Main, GER Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | Percona Live Europe 2018
Preventing Updates On Replicas that Leave the Cluster
Automatic protection against involuntarily tainting of offline replicas

A joins a single primary cluster and it allows update operations prior to joining.

A becomes a secondary and is automatically set to read only.

A leaves the group and remains read only until the DBA reverts.

Backported to 5.7.20
Primary Election Weights

Choose next primary by assigning election weights to the candidates.

- **B** is the primary.

- **B** is not in the group anymore.

- **C** has higher weight than **A**. **C** is elected the new primary.
Automatically Abort Replicas that Leave the Group

Automatically Shutdown When Replica Leaves the Group Involuntarily

A is a secondary and was automatically set to read only.

A leaves the group involuntarily (failed to apply changes, network partitioned, etc).

A shuts itself down, thus becoming effectively unavailable for both reads and write operations.

@@group_replication_exit_state_action={ READ_ONLY | ABORT_SERVER }

New in 8.0.12
Backported to 5.7.24
Trigger Primary Election Online
User tells current primary to give up its role and assign it to another server.

Now I want A to be the primary, not B.

A is the primary. B stepped down.
Change Group Mode Online

User can specify on which mode the group operates.

Single-primary mode, B is the primary.

Now I want the group operating in multi-primary mode.

Return to single-primary mode.

New in 8.0.13
Relaxed Member Eviction

User controls the amount of time to wait until others decide to evict a member from the group.

I think A is not around anymore. Let's kick it out of the group!

Hold on. Let's wait for sometime! Maybe it is just too busy to talk to us right now...

OK. Let's give it some more time!

See... I told you. A is back! Good thing we waited.

UNREACHABLE
Enhancements in MySQL 8 (and 5.7)

3.1 Binary Log Enhancements
3.2 Operations
3.3 Performance
3.4 Monitoring
3.6 Other
Highly Efficient Replication Applier
Write set parallelization

• WRITESET dependency tracking allows applying a single threaded workload in parallel.
 – Delivers the best throughput of the three dependency trackers, at any concurrency level.

• WRITESET_SESSION in addition to writesets tracks sessions dependencies as well. Two transactions executed on the same session are always scheduled in execution order on replica servers.

• Fast Group Replication recovery – time to catch up.
Highly Efficient Replication Applier

Write set parallelization

Applier Throughput: Sysbench Update Index

Number of Clients on the Master:
- COMMIT_ORDER
- WRITESET
- WRITESET_SESSION

Backported to 5.7.22
Fast Group Replication Recovery
Replica quickly online by using WRITESET

Group Replication Recovery Time: Sysbench RW (durable settings)

- Sysbench RW at 33% capacity (workload: 4K TPS on 64 threads)
 - MySQL 5.7.20
 - MySQL 8.0.3

- Sysbench RW at 66% capacity (workload: 8K TPS on 64 threads)
 - MySQL 5.7.20
 - MySQL 8.0.3

Group Replication Recovery Time: Sysbench Update Index (durable settings)

- Sysbench RW at 33% capacity (workload: 9K TPS on 64 threads)
 - MySQL 5.7.20
 - MySQL 8.0.3

- Sysbench RW at 66% capacity (workload: 18K TPS on 64 threads)
 - MySQL 5.7.20
 - MySQL 8.0.3
High Cluster Throughput

More transactions per second while sustaining zero lag on any replica

– At lower thread count, the throughput of the system doubles in MySQL 8.0 compared to MySQL 5.7 on durable settings.

– At lower thread count, the throughput of the system more than doubles in MySQL 8.0 compared to MySQL 5.7 on non-durable settings.
High Cluster Throughput
More transactions per second while sustaining zero lag on any replica

Asynchronous Replication Sustained Throughput
(Sysbench Update Index, durable settings)

- MySQL 5.7
- MySQL 8.0.3

Asynchronous Replication Sustained Throughput
(Sysbench Update Index, non-durable settings)

- MySQL 5.7
- MySQL 8.0.3
Efficient Replication of JSON Documents
Replicate only changed fields of documents (Partial JSON Updates)

- Numbers are from a specially designed benchmark:
 - tables have 10 JSON fields,
 - each transaction modifies around 10% of the data
Efficient Replication of JSON Documents

Replicate only fields of the document that changed (Partial JSON Updates)

Throughput on the Master:
Partial JSON vs Complete JSON

Throughput on the Slave:
Partial JSON vs Complete JSON
3. Enhancements in MySQL 8 (and 5.7)

3.1 Binary Log Enhancements

3.2 Operations

3.3 Performance

3.4 Monitoring

3.5 Other
Monitor Lag With Microsecond Precision

Through the entire asynchronous topology

How much time does my data take to reach D coming from A?
Monitor Lag With Microsecond Precision

From the immediate master

How much time does my data originated in A takes to flow from B to C?
Monitor Lag with Microsecond Precision
For each stage of the replication applier process

• Per Stage Timestamps
 – User can monitor how much time it takes for a specific transaction to traverse the pipeline.
Global Group Stats Available on Every Server
Version, Role and more

• Query one Replica, Get status of all
 – Every replica reports group-wide information about roles and versions of the members of the group.
 – Also available at any replica are group-wide status.
Group Replication Message Cache Memory Usage

- GCS/XCom’s Paxos message cache is instrumented.
- GCS/XCom’s Paxos message cache memory usage is exposed in performance schema.

```
ServerA> select * from memory_summary_global_by_event_name where event_name like "%GCS_XCom%"

*************************** 1. row ***************************
EVENT_NAME: memory/group_rpl/GCS_XCom::xcom_cache
COUNT_ALLOC: 28890317
COUNT_FREE: 28840318
SUM_NUMBER_OF_BYTES_ALLOC: 24499151783
SUM_NUMBER_OF_BYTES_FREE: 24470424555
LOW_COUNT_USED: 0
CURRENT_COUNT_USED: 49999
HIGH_COUNT_USED: 50000
LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 28727228
HIGH_NUMBER_OF_BYTES_USED: 135676530
1 row in set (0.01 sec)
```
Enhancements in MySQL 8 (and 5.7)

3.1 Binary Log Enhancements
3.2 Operations
3.3 Monitoring
3.4 Performance
3.5 Other
Changes to defaults in MySQL 8

High performance replication enabled out-of-the-box

• Binary log is on by default.
• Logging of slave updates is on by default.
• Replication metadata is stored in InnoDB tables by default instead of files.
• Row-based applier uses hash scans to find rows instead of table scans.
• Transaction write-set extraction is on by default.
• Binary log expiration is set to 30 days by default.
• Server-id is set to 1 by default instead of 0.
Other MySQL 8 Replication Enhancements

- **Monitoring:** Monitor replication even when disk full
- **Monitoring:** Current query being applied, even for row-based replication
- **Monitoring:** Replication filters statistics in performance schema
- **Monitoring:** Group Replication threads instrumented and shown in performance schema
- **Monitoring:** Group Replication conditional variables and mutexes instrumented and shown in performance schema
- **Monitoring:** Replication worker transaction retries counter added to performance schema applier table.
Other MySQL 8 Replication Enhancements

• **Operations:** Restore global transaction identifiers metadata on a non-empty server

• **Operations:** Specify binary log file number after RESET MASTER

• **Operations:** Specify when binary log files are automatically purged (with second precision)

• **Operations:** SAVEPOINT support when write sets are being extracted

• **Operations:** P_S table for consistent log positions (replacing potentially expensive FLUSH TABLE WITH READ LOCKS)

• **Operations:** Support hostnames in Group Replication whitelist

• **Operations:** New options to fine tune the cluster automatic flow control.
Other MySQL 8 Replication Enhancements

• **Troubleshooting:** Dynamic and high performance debugging of group replication inter-node messaging

• **Recoverability:** Recover DDL and binary log together after a crash
Roadmap
The Road to MySQL 8 Group Replication and InnoDB Clusters

- **GR 0.2.0 labs**
 - *Hello world!
- **MySQL 5.7.9**
 - 5.7 is GA
 - Lifecycle interfaces
 - P_S tables for GR server side changes
- **MySQL 5.7.17**
 - GR is GA
- **MySQL 8.0.0 DMR**
 - More replication enhancements
- **MySQL 8.0.1 DMR**
 - GR is released with 8 InnoDB Cluster is GA
 - Lots of replication enhancements
- **MySQL 8.0.2 DMR**
 - bug fixes
- **MySQL 8.0.3 RC1**
 - bug fixes
 - Partial JSON updates
 - Monitoring enhancements
- **MySQL 8.0.4 RC2**
 - Bug fixes
 - Monitoring
- **MySQL 8.0.11 GA**
 - Bug fixes
- **MySQL 8.0.12 GA**
 - Member auto-shutdown
 - Instrumentation
- **MySQL 8.0.13 GA**
 - Select Primary
 - Monitoring
 - Performance
 - Relax Eviction
- **MySQL 8.0.14 GA**
 - More replication enhancements

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
MySQL InnoDB Cluster: The End Goal
Conclusion
Conclusion

Latest MySQL 8 GA is out:

• Performance/efficiency improvements
 – Group Replication copes better with high latency networks.

• Replication instrumentation
 – More memory and replication stats instrumentation.

• Improved Dev-Ops and DBA experience
 – Options to relax automatic member eviction
 – Trigger primary election and select new primary online.
 – Automatically shutdown the server if member gets out of the group involuntarily.
Where to go from here?

• Packages

• Documentation

• Blogs from the Engineers (news, technical information, and much more)
 – http://mysqlhighavailability.com