The Future of Postgres

Ken Rugg, EnterpriseDB
May 30, 2019
We are the world leader Postgres-based software and services

PROVEN
• Recognized RDBMS leader by Gartner
• 2013-2018 Member of Gartner Magic Quadrant

COMMITTED
• Founded in 2004
• Largest PostgreSQL contributor—40% of core team

GLOBAL
• Customer global base > 4000
• 300+ Employees world-wide
• Offices in 16 countries
Postgres: DBMS OF THE YEAR! 2018

PostgreSQL is the DBMS of the Year 2017
by Paul Andlinger, Matthias Geibmann, 2 January 2018
Tags: DBMS of the year, Elasticsearch, MariaDB, PostgreSQL

PostgreSQL is the database management system that gained more popularity in our DB-Engines Ranking within the last year than any of the other 341 monitored systems. We thus declare PostgreSQL as the DBMS of the Year 2017.

DB-Engines Ranking
347 systems in ranking, May 2019

<table>
<thead>
<tr>
<th>Rank</th>
<th>May 2019</th>
<th>Apr 2019</th>
<th>May 2018</th>
<th>DBMS</th>
<th>Database Model</th>
<th>Score May 2019</th>
<th>Score Apr 2019</th>
<th>Score May 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>Oracle</td>
<td>Relational, Multi-model</td>
<td>1285.55</td>
<td>+5.61</td>
<td>-4.87</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>MySQL</td>
<td>Relational, Multi-model</td>
<td>1218.96</td>
<td>+3.82</td>
<td>-4.38</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>Microsoft SQL Server</td>
<td>Relational, Multi-model</td>
<td>1072.19</td>
<td>+12.23</td>
<td>-13.66</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
<td>4.</td>
<td>4.</td>
<td>PostgreSQL</td>
<td>Relational, Multi-model</td>
<td>478.89</td>
<td>+0.17</td>
<td>+77.99</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
<td>5.</td>
<td></td>
<td>MongoDB</td>
<td>Document</td>
<td>408.07</td>
<td>+6.10</td>
<td>+65.96</td>
</tr>
<tr>
<td>6.</td>
<td>6.</td>
<td>6.</td>
<td></td>
<td>IBM Db2</td>
<td>Relational, Multi-model</td>
<td>174.44</td>
<td>-1.61</td>
<td>-11.17</td>
</tr>
<tr>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td></td>
<td>Elasticsearch</td>
<td>Search engine, Multi-model</td>
<td>148.62</td>
<td>+2.62</td>
<td>+18.18</td>
</tr>
<tr>
<td>8.</td>
<td>7.</td>
<td>7.</td>
<td></td>
<td>Redis</td>
<td>Key-value, Multi-model</td>
<td>148.40</td>
<td>+2.03</td>
<td>+13.06</td>
</tr>
<tr>
<td>9.</td>
<td>8.</td>
<td>8.</td>
<td></td>
<td>Microsoft Access</td>
<td>Relational</td>
<td>143.78</td>
<td>-0.87</td>
<td>+10.67</td>
</tr>
<tr>
<td>10.</td>
<td>11.</td>
<td>10.</td>
<td></td>
<td>Cassandra</td>
<td>Wide column</td>
<td>125.72</td>
<td>+2.11</td>
<td>+7.89</td>
</tr>
</tbody>
</table>
HIGHLIGHTS OF POSTGRES 12

• Table Access Methods
 • Storage API

• btree Index Improvements
 • In some cases, btree indexes are up to 40% smaller than in previous releases.

• Partitioning Improvements
 • Foreign keys that reference partitioned tables
 • Faster run-time pruning
 • Partition pruning now covers a few more cases
 • ATTACH PARTITION w/ShareUpdateExclusiveLock
 • Use Append Rather than MergeAppend for scanning ordered partitions
HIGHLIGHTS OF POSTGRES 12 (MORE)

• Removal of recovery.conf
• Generated columns (stored, not virtual)
• CTE inlining (with manual control)
• REINDEX CONCURRENTLY
• Unified logging system for command-line programs, including colors.
• SQL/JSON: jsonpath
• Extended statistics: Multivariate MCV lists
• Collations with nondeterministic comparison
• GSSAPI encryption support
• SERIALIZABLE for parallel query
FUTURE TECHNOLOGY TRENDS
Three cool areas of innovation

- Storage Engine
 - Storage engine API
 - zHeap

- Data Distribution
 - Partitioning & Sharding
 - Replication

- Deployment Options
 - Cloud
 - Containers
PLUGGABLE STORAGE

To all the MySQL folks… Yeah, I know…

• Allow PostgreSQL to support pluggable storage formats

• Allows innovation – major changes to the heap are impossible because everyone relies on it. Can’t go backwards for any use case!

• Allows for user choice – if there are multiple storage formats available, pick the one that is best for your use case.
PLUGGABLE STORAGE: EXAMPLES

• **Columnar storage**
 • Most queries don’t need all columns

• **Write-once read-many (WORM)**
 • No support UPDATE, DELETE, or SELECT FOR UPDATE/SHARE

• **Index-organized storage**
 • One index is more important than all of the others

• **In-memory storage**
 • No need to spill to disk

• **zHeap…**
ZHEAP: HIGH-LEVEL BENEFITS

• Better Bloat Control
 • Perform updates “in place” to avoid creating bloat (when possible)
 • Reuse space right after COMMIT or ABORT – little or no need for VACUUM

• Fewer Writes (eliminate write amplification)
 • Eliminate hint-bits, freezing and anything else that could dirty a page (other than an update)
 • Allowing in-place updates when index column is updated by providing delete-marking in index
 • Indexes are not touched if the indexed columns are not changed

• Smaller in Size
 • Narrower tuple headers – most transactional info not stored on the page itself
 • Eliminate most alignment padding
PARTITIONING IS MORE THAN JUST SHARDING
EVOLVING TO SUPPORT MORE AND MORE USE CASES

Systems of Record (SoR)
- Partitioning
- Rapidly Advancing in Core

Systems of Engagement (SoE)
- Sharding
- Citus Extension

True General Purpose DBMS
- 54% % Users
- 63% % Users
- 17% % Users

Systems of Analysis (SoA)
- MPP Data warehouses
- Greenplum, RedShift…

“Corner Cases” that require specialized technologies, e.g. MPP, NoSQL, RAC

% Percentage of Postgres users who run each data management workload
LOGICAL REPLICATION ENABLES MANY NEW USE CASES

- Table-base, logical replication
- Row level filtering
- Multi-master (MMR) replication for Postgres
- Real time integration & migration from Oracle and MS SQL Server
- Leverages Kafka & Zookeeper for HA & Horizontal Scalability
- Multi-region and geographically dispersed databases
POSTGRES – 3RD MOST DEPLOYED CONTAINER

Top Technologies Running on Docker

% of Companies Running This Technology

Source: Datadog
POSTGRES: UBIQUITOUS IN CLOUD
Rapidly Evolving and Highly Mature

Logos of various cloud providers and IT companies.
BUT NOT ONLY CLOUD?

We asked a 1,000 downloaders from postgresql.org....

What is Timeline to Run Databases in Cloud?

- Never/No plans to deploy DBs in the cloud: 33%
- More than 12 months out: 17%
- In 6 to 12 months: 9%
- Within 6 months: 12%
- Currently running DBs in the cloud: 29%
QUESTIONS & DISCUSSION
KEYNOTE SPEAKER

World Wide Web Inventor, Sir Tim Berners-Lee to Deliver Keynote at Postgres Vision 2019

LEARN MORE
THANK YOU
CONTINUALLY IMPROVING PERFORMANCE

Global mobile ad network
- Largest database is 14TB
- 1.2 billion transactions a day, 55K transaction per second
- 400 concurrent users
- Analyzes 240TB of data per day

Online Brokerage Firm
- 1 billion writes a day
- 3,000 transactions per second
- 800 concurrent users

Global consumer financial services provider
- Example application database is 2TB
- 200K SELECT statements per second
- 25K WRITE transactions per second

Global stock trade underwriter
- Largest database is 8 TB
- 6 to 10 million transactions per day
Reduce Open DB Cloud operating costs with Power L922 Server running EnterpriseDB Postgres Advanced Server 10
2.4X price-performance leadership over tested Intel Xeon SP Gold 6148 servers

<table>
<thead>
<tr>
<th>EDB POSTGRES</th>
<th>IBM Power L922 (20-core, 256GB, 4 LPARs)</th>
<th>Intel Xeon SP based 2-socket server (40-core, 256GB, 4 VMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server price</td>
<td>$27,480 (3-year warranty: $29,247)</td>
<td>$29,247</td>
</tr>
<tr>
<td>Solution Cost</td>
<td>$144,557 (Server + RHEL OS + Virtualization + EDB Annual Subscription @ $1,750 per core/yr: $243,166)</td>
<td></td>
</tr>
<tr>
<td>EDB pgbench 1</td>
<td>853,709 tps</td>
<td>611,118 tps</td>
</tr>
<tr>
<td>TPS/$</td>
<td>5.9 tps/$</td>
<td>2.5 tps/$</td>
</tr>
</tbody>
</table>

2.8X per core performance
40% Lower solution costs

2.4X Better Price-performance

1. Based on IBM internal testing of multiple VM images running pgbench benchmark at scale factor of 300, 20 GB buffer size. Results valid as of 4/19/18 and conducted under laboratory condition with speculative execution controls to mitigate user-to-kernel and user-to-user side-channel attacks on both systems, individual result can vary based on workload size, use of storage subsystems & other conditions.
2. IBM Power L922 (2x10-core/2.9 GHz/256 GB memory) 2x 300GB SATA 7.2K rpm LFF HDD, 10Gb two-port, 1x 16Gbps FCA, EDB Postgres Advanced Server 10, RHEL 7.5 with PowerVM (4 partitions@5-cores each).
3. Competitive stack: 2-socket Intel Xeon Skylake Gold 6148 (2x20-core/2.4 GHz/256 GB memory), 2x 300GB HDD, 1G two-port, 1x 16Gbps FCA, EDB Postgres Advanced Server 10, RHEL 7.5, KVM (4 VMs@10-cores each).
ROBUST POSTGRES EXTENSIONS

On the Rise from an Expanding Partner Ecosystem

TIME SERIES GEO-SPATIAL GRAPH MPP