Trends in Data Warehouse Data Modeling: Data Vault and Anchor Modeling
Thanks for Attending!

- Roland Bouman, Leiden the Netherlands
- MySQL AB, Sun, Strukton, Pentaho (1 nov)
- Web- and Business Intelligence Developer
- author:
 - Pentaho Solutions
 - Pentaho Kettle Solutions
- Http://rpbouman.blogspot.com/
- Twitter: @rolandbouman
Data Warehouse (DWH)

- Support Business Intelligence (BI)
 - Reporting
 - Analysis
 - Data mining

- General Requirements
 - Integrate disparate data sources
 - Maintain History
 - Calculate Derived data
 - Data delivery to BI applications
DWH Architectures

- Categories
 - Traditional
 - Hybrid
 - Modern

- Aspects
 - Modelling
 - Data logistics
DWH Architectures

- Traditional
 - Information Factory (Bill Inmon)
 - Enterprise Bus (Ralph Kimball)
- Hybrid
- Modern
DWH Architectures

- Traditional
- Hybrid
 - Hub-and-Spoke
- Modern
DWH Architectures

- Traditional
- Hybrid
- Modern
 - Data Vault (Dan Linstedt)
 - Anchor Modeling (Lars Rönnbäck)
Inmon DWH (Traditional): Corporate Information Factory

“A source of data that is subject oriented, integrated, nonvolatile and time variant for the purpose of management's decision processes.”

Bill Inmon (the Data Warehouse Toolkit) • http://www.inmoncif.com/home/
Inmon DWH (Traditional): Corporate Information Factory

- Enterprise or Corporate DWH, DWH 2.0
- Focus on backroom data integration
 - Central information model
 - Single version of the truth
- Data delivery
 - Disposable data marts
- Bottom-up
Data logistics of the Corporate Information Factory

Source:
- OLTP DB
- Files

Extract Transform Load

Staging

Enterprise Data Warehouse

Extract Transform Load

OLAP DB

Cube

Data Marts

BI Apps
Data Modeling for the CIF Enterprise DWH

- Normalized, typically 3NF
- Organized in “subject areas”
 - Series of related tables
 - Example: Customer, Product, Transaction
 - Common key
Data Modeling for the CIF Enterprise DWH

- History
 - PK includes a date/time part
- Contains both detail and aggregate data
 - Multiple levels of aggregation
Kimball DWH (Traditional): Dimensional Model and DWH Bus Architecture

“The data warehouse is the conglomeration of an organization's staging and presentation areas, where operational data is specifically structured for query and analysis performance and ease of use.”

Ralph Kimball (the Data Warehouse Toolkit)
•http://www.kimballgroup.com/
Kimball DWH (Traditional): DWH Bus Architecture

- Focus on data delivery
- Integration at the data mart level
- Top-down
Data logistics of the DWH Bus Architecture

Source

OLTP DB

Files

Staging
Extract
Transform
Load

(Enterprise) Data Warehouse

EDW is a collection Data Marts

BI Apps

OLAP DB

Cube

EDW is a collection Data Marts

BI Apps
Data Modeling for the DWH Bus Architecture

- Dimensional Modeling
 - Star schemas
- Organized in:
 - Fact tables
 - Dimension tables
Data Modeling for the DWH Bus Architecture

- Fact tables
 - Highly normalized
 - Additive metrics

- Dimension tables
 - Highly denormalized
 - Descriptive labels
 - Shared across fact tables
Data Modeling for the DWH Bus Architecture

- History
 - Slowly changing dimensions (versioning)
 - Fact links to Date and/or Time dimensions

- Detailed, not aggregated
Sakila Rental Star Schema
Sakila DWH Bus Architecture

- **dim_film**
- **dim_date**
- **fact_inventory**
- **fact_rental**
- **fact_payment**
- **dim_store**
- **dim_staff**
- **dim_customer**
Problems with traditional DWH architectures

- General Problems
 - Lack of flexibility and resilience to change
 - Loading (ETL) Complexity

- Problems with Inmon
 - Centralization requires upfront investment
 - Single version of whose truth, when?

- Problems with Kimball
 - Dimensional Model anomalies
Dimensional Modeling
Anomalies

- Snowflaking (dimension normalization)
 - Monster dimensions
 - Outriggers
 - Ex: Customer Demographics

- Hierarchical data
 - Bridge table (closure table)
 - Ex: Employee/Boss,

- Multi-valued dimensions
 - Bridge table
 - Ex: Account/Customer bridge table
Hybrid DWH: Hub-and-Spoke

- Inmon back-end (hub)
- Kimball front-end (satellites)
Modern: Data Vault

“The Data Vault is a detail oriented, historical tracking and uniquely linked set of normalized tables that supports one or more functional areas of business. It is a hybrid approach encompassing the best of breed between 3rd normal form (3NF) and star schema.”

Dan Linstedt (Data Vault Overview)
• http://danlinstedt.com/
Data Vault

- Focus on
 - Data Integration
 - Traceability and Auditability
 - Resilience to change
- Single version of the facts
 - Rather than single version of the truth
- All of the data, all of the time
 - No upfront cleansing and conforming
- Bottom-up
Data Vault Modelling

- Hubs
- Links
- Satellites
Data Vault Modelling: Hubs

- Hubs Model Entities
- Contains business keys
 - PK in absence of surrogate key
- Metadata:
 - Record source
 - Load date/time
- Optional surrogate key
 - Used as PK if present
- No foreign keys!
Data Vault Modelling: Links

- Links model relationships
 - Intersection table (M:n relationship)
- Foreign keys to related hubs or links
 - Form natural key (business key) of the link
- Metadata:
 - Record source
 - Load date/time
- Optional surrogate key
Data Vault Modelling: Satellites

- Satellites model a group of attributes
- Foreign key to a Hub or Link
- Metadata:
 - Record source
 - Load date/time
Data Vault tools and Example

- Kettle Data Vault Example
 - Sakila Data Vault
 - Chapter 19
 - Kasper van de Graaf
 - http://www.dikw-academy.nl

- Quipu
 - Data Vault Generator
 - Kettle templates
 - Johannes van den Bosch
 - http://www.datawarehousemanagement.org/
Modern: Anchor model

“Anchor Modeling is an agile information modeling technique that offers non-destructive extensibility mechanisms enabling robust and flexible management of changes. A key benefit of Anchor Modeling is that changes in a data warehouse environment only require extensions, not modifications.”

Lars Rönnbäck (Agile Information Modeling in Evolving Data Environments)

http://www.anchormodeling.com/
Anchor Modelling

• Focus on
 – Resilience to change
 – Agility
 – Extensibility
 – History tracking

• Bottom-up
Anchor Modelling

- 6NF (Date, Darwen, Lorentzos)
- Table features no non-trivial join dependencies at all
- Translation: A 6NF table cannot be decomposed losslessly
- Translation
- Temporal Data
Anchor Modelling Constructs

- Anchors
- Attributes
- Ties
- Knots
Anchor Modelling: Anchors

- Entities are modeled as Anchors
- Relationships may be modeled as Anchors
 - m:n relationships having properties
- Only a surrogate key
Anchor Modelling: Ties

- Ties model relationships
 - 1:n relationships
 - m:n relationships without properties
- Static vs Historized
 - History tracked using date/time
- May be Knotted
 - Knot holds set of association types
- Two or more “anchor roles”
 - Relationships may be broken into several ties having only mandatory anchors
Anchor Modelling: Attributes

- Models properties of an Anchor
- Static vs Historized
 - History tracked using date/time
- May or not be Knotted
 - Knot holds set of valid attribute values
Anchor Modelling: Knots

- Reference table
 - Fairly small set of distinct values
- Dictionary lookup to qualify
 - Attributes
 - Ties
- “Knotted” Attributes and Ties
Anchor Model Diagram

http://www.anchormodeling.com/modeler/latest/
Aknowledgements

• Kasper de Graaf
 – Twitter: @kdegraaf
 – http://www.dikw-academy.nl

• Jos van Dongen
 – Twitter: @josvandongen
 – http://www.tholis.com/