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What is this all about? 

•  Benchmark “infrastructure” 
is never done. 
•  It is a constantly evolving 

journey. 
– 20+ years for me! 

•  Hopefully you’ll learn a few 
new things today. 
•  Raise your hand. 
•  Share what you learn with 

others. 
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Who am I? 

•  I’m not Mark. 
•  He’s that guy at Facebook. 
•  Sorry if you expected Mark. 
 

Mark	

 Me	
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Who am I? 

 
“Mark Callaghan’s lesser-known but nonetheless 

smart brother.”  
 
 

[C. Monash, May 2010] 
 
 

www.dbms2.com/2010/05/25/voltdb-finally-launches  
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Who am I? Seriously. 

My Background 
•  Internal development (Oracle), 92-99  
•  SaaS development (Oracle), 99-09  
•  Field engineering (VoltDB), 09-11  
•  VP Engineering (Tokutek), 11-present 

Meaning 
•  development, administration, management, 

infrastructure, testing, product management, 
support 
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What is benchmarking? 
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What is benchmarking? 

Wikipedia 
“Benchmarking is used to measure performance 
using a specific indicator ([transactions per second, 
transactional latency, etc]) resulting in a metric of 
performance that is then compared to others.” 

 
My Interpretation 

“Run something while taking a lot of measurements, 
make changes, rerun and compare.” 
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Generic Benchmarking Process 

•  Prepare for benchmark 
– Hardware, operating system, software 

•  Run Benchmark 
– Record data as you go 

•  Save Results 
– Flat files, database tables 

•  Cleanup 
– Leave things as you found them 

•  Analyze results 
– Look for positive and negative differences 

•  Change something 
– 1 thing at a time if possible 

•  Repeat 
– A lot 
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My first benchmark 

Commodore-64 (1985) 
•  Programming graphics demos 
•  Needed to make sprites “bounce” 

•  Timed round-trips using my stopwatch 
•  Using COS() worked, but was slow 
•  Found that a lookup table was much faster 
– COS(0)=1, COS(1)=.9998, … 

•  A benchmarker was born! 
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Now I’m an Addict (28 years later) 

•  TokuDB v5.2 – 01/2012 
– End of release (code-freeze) 
– 3 benchmarks 
– 1 platform (Centos5), Disk only 
– By hand: start mysql, run benchmark, graph results 

•  TokuDB v6.6 – 12/2012 
– Each major development effort 
– 9 benchmarks 
– 2 platforms (Centos5 and Centos6), Disk and SSD 
– Automated: single script produces full comparison 

•  Soon 
– Nightly 
– 9+ benchmarks 

o Linkbench and many other new ideas 
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Important benchmarking skills 

•  Infrastructure 
– Hardware 
– Operating Systems 

•  Software Development 
– Benchmark applications are applications 
– Bash scripting 

•  Communications 
– Displaying results, finding trends 
– Blogging 

•  You are only as good as your worst skill 
– They all matter 
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Why is frequent benchmarking important? 

•  One improvement can mask one drop 
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Why is frequent benchmarking important? 

•  Find issues while there is still time to deal with 
them 
– Avoid creating a “fix last release’s performance 
regression” ticket 
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Why is frequent benchmarking important? 

•  Developers <3 data 
– Satisfaction of immediate feedback for efforts 
– (or) find out things are worse 
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Level : Beginner 



16


Basic configuration 

•  Start with a “known good” environment 
– Learn from what others have shared about server and 

MySQL configuration, many online resources exist 
– Vadim Tkachenko @ Percona, 

http://www.mysqlperformanceblog.com/author/vadim/ 
– Dimitri Kravtchuk @ Oracle, http://dimitrik.free.fr/blog/ 
– Too many to list them all. 
– I always create an extra file system where benchmarking 

occurs 
o Treat it as if it will not be there tomorrow 
o Enables rebuilding/changing file systems without losing 
important work 
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Benchmarking your equipment 

•  Quick tests to ensure configuration is correct 
•  If possible, compare to existing equipment 
•  Sysbench CPU 

–  sysbench --test=cpu --cpu-max-prime=20000 run 

•  Sysbench memory 
–  sysbench --test=memory --memory-block-size=1K --memory-scope=global --memory-total-size=100G --memory-

oper=read run 
–  sysbench --test=memory --memory-block-size=1K --memory-scope=global --memory-total-size=100G --memory-

oper=write run 
•  Sysbench IO 

–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-num=1 prepare 
–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-extra-flags=direct --file-num=1 --max-

requests=50000 run 

–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-num=1 cleanup 
•  Sysbench OLTP 

–  sysbench –test=oltp -oltp_tables_count=16 --oltp-table-size=500000 prepare 

–  sysbench –test=oltp -oltp_tables_count=16 --oltp-table-size=500000 prepare 
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What should I measure? 

•  Start with throughput and latency 
– Throughput = the number of operations per specific time 

interval, often referred to as transactions per second (TPS) 
– Latency = the amount of time required to satisfy a single 

transaction 
•  Use Intervals 
– Benchmarks generally run for several minutes or hours, 

throughput and latency should be captured in smaller 
windows (minutes or seconds). 

– Interval data provides the information needed to compute 
cumulative averages, min, max… 
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Where do you go with questions? 

•  Ask the benchmark owner 
– sysbench = Percona (launchpad) 
– Iibench = Mark Callaghan (launchpad) 
– tpc-c = Percona (launchchpad), many other 

implementations exist 
•  www.stackoverflow.com / www.serverfault.com 
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The power of 2 (but buy 3 if you can) 

•  Historical results are critical 
– (but sometimes you just need to start over) 

o Equipment dies or becomes irrelevant 
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The power of 3 (for a while) 

•  Run 3 times until you regularly produce consistent results 
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Visualization, for now 

•  Use Excel or LibreOffice 
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Hacks 

•  Low tech solutions are fine 
– Franken-switch – partition detection benchmarking 

Find hardware	


Buy it	



Install it	


Configure it	



Run benchmarks	



Vs.	
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Ready-to-go MySQL 

•  Evolutionary process – I’ve probably done each > 1000 times 
–  Phase 1 : before each benchmark manually create MySQL and start 

o  untar MySQL 
o  copy my.cnf from known good directory 
o  bin/mysql_install_db 
o  bin/mysqld_safe 

–  Phase 2 : for each new build, unpack and repack MySQL (ready-to-go) 
o  in empty folder : copy my.cnf, fresh-db, and MySQL tar 

o  ./fresh-db (untars MySQL, copies my.cnf, runs install, starts/stops mysql) 
o  rm –rf mysql-test sql-bench 
o  tar xzvf $ARCHIVE_DIR/blank-toku610-mysql-5.5.28.tar.gz . 

–  Phase 3 : for each new build, unpack and repack MySQL (ready-to-go) 
o  in empty folder : copy MySQL tar 
o  gf blank-toku610-mysql-5.5.28.tar.gz (bash script that does everything else) 

–  Phase 4 : at some point 
o  in empty folder : copy MySQL tar 
o  gf2 (bash script that does everything else, including detecting version of TokuDB and 

MySQL/MariaDB) 
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Useful technologies 

•  rsync 
–  Synchronize your files with benchmark servers 

•  nfs 
–  (If you can) make all of your files available to your benchmark servers 

without needing to manually rsync  

•  dropbox  
–  Easy way to synchronize your files with EC2 benchmark servers 
–  (thanks for Amrith Kumar @ ParElastic for this tip) 
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Exit throughput? 

•  Allow your benchmark to stabilize 
•  Average final <x> transactions  or <y> minutes 
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Trust no one 

•  If possible, dedicated benchmarking equipment 
•  Prior to starting, check for clean environment (users, 

processes) 
– users 
– ps aux | grep mysqld 
–  ls /tmp/*.sock 

•  Periodically check for the duration of benchmark run 
•  Leave it as you found it 
– Shutdown MySQL 
– Kill any stray monitoring scripts 
– Delete all MySQL files 
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Level : Intermediate 
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Environment variables 

•  I find it convenient for my benchmarking scripts to pass 
information using environment variables 
–  Command line arguments can be used as well 

•  Create a commonly named set of environment variables for all 
machines. 

•  Load it on login (add to .bashrc) 
–  source ~/machine.config 

export machine_name=mork!

export tokudb_cache=24G!

export innodb_cache=24G!

export storage_type=disk!

export benchmark_directory=/data/benchmark!
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Scripting 1 

•  Lets do some bash, simple Sysbench runner 

#! /bin/bash!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!
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Scripting 2 

•  Make sure an environment variable is defined 

#! /bin/bash!

!

if [ -z "$machine_name" ]; then!

  echo "Need to set machine_name"    !

  exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!
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Scripting 3 

•  Make sure a directory exists 

#! /bin/bash!

!

if [ ! -d "$benchmark_results_dir" ]; then    !

  echo "Need to create directory $benchmark_results_dir"    !

  exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!
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Scripting 4 

•  Make sure a directory is empty 

#! /bin/bash!

!

if [ "$(ls -A $benchmark_results_dir)" ]; then!

  echo "$benchmark_results_dir has files, cannot run script”!

  exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!
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Scripting 5 

•  Default values 

#! /bin/bash!

!

if [ -z "$num_tables" ]; then!

    export num_tables=16!

fi!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

 



35


Scripting 6 – scripts calling scripts 

controller.bash 
#! /bin/bash!

if [ -z "$mysql" ]; then!

  export mysql=blank-toku701-mysql-5.5.30!

fi!

if [ -z "$num_tables" ]; then!

  export num_tables=16!

fi!

for numThreads in 1 2 4 8 16 32 64; do!

  export clientCount=${numThreads}!

  ./runner.bash!

done!

!

runner.bash 
#! /bin/bash!

if [ -z "$mysql" ]; then!

  echo "Need to set mysql”; exit 1!

fi!

if [ -z "$num_tables" ]; then!

  export num_tables=16!

fi!

if [ -z ”$clientCount" ]; then!

  export clientCount=64!

fi!

mkdb ${mysql}    #unpack and start ready-to-go-mysql!

sysbench –test=oltp num_tables=${num_tables} –num_threads=${clientCount} > results.txt!

tar ${benchmark_results_dir}/${machine_name}-${clientCount}.tar results.txt!

mstop            #shutdown mysql and cleanup!

!
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Scripting 7 – scripts calling scripts calling scripts 

multibench.bash 
 
#! /bin/bash!

for mysqlType in mysql mariadb ; do!

  export mysql=blank-toku701-${mysqlType}-5.5.30!

  sysbench-directory/controller.bash!

  iibench-directory/controller.bash!

  for numWarehouses in 100 1000 ; do!

    export num_warehouses=${numWarehouses}!

    tpcc-directory/controller.bash!

  done!

done!
!

 



37


Add more measurements 

•  IO (iostat) 
•  CPU/Memory (ps) 
•  MySQL engine status 
– “show engine <storage-engine-name> status;” 

•  MySQL global status 
– “select * from information_schema.global_status;” 

•  You are only measuring too much when it affects the 
benchmark 

•  You never know when it will be helpful 
•  De-dupe 
– Many counters are the same at each interval, save space by 

only capturing values that changed since the last 
measurement 
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Optimize everything not benchmarked 

•  Spend as little time as possible on surrounding steps 
•  Example : load Sysbench data, 16 tables, 50 million rows per 

table 
– trickle load 

o client application generating insert statements 
o 5+ hours to load 

– bulk load 
o after trickle loading, mysqldump each table to TSV 
o “load data infile …” 
o 70 minutes to load 

– preloaded database 
o save MySQL data folder after bulk loading 
o “cp –r” prior to running benchmark 
o 10 minutes to load 



39


Anomalies 

•  Graph results, review graphs regularly 
–  Huge dip in the middle of the benchmark 
–  Exit throughput was unaffected 
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Don’t automate too early 

•  You’ll end up automating the wrong things 
•  You’ll over-engineer your automation 
•  Never automate “until it hurts” 
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Put results into a database 

•  Create a simple schema for historical results 
•  benchmark_header 
–  bench_id 
–  name (sysbench, tpcc, iibench) 
–  duration (# seconds | # rows) 
–  thruput (use exit throughput) 
–  attr1 (# sysbench rows | # tpc-c warehouses | # iibench rows) 
–  attr2 (# sysbench tables) 
–  clients (concurrency) 
–  machine_name (server) 

•  benchmark_detail 
–  bench_id 
–  duration (# seconds | # rows) 
–  thruput (interval) 
–  latency (interval) 
–  throughput_avg (cumulative) 

•  create script to read benchmark logs and load database 
•  run immediately as benchmark ends 
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Pre-compute interesting numbers 

•  Pre-compute interesting numbers 
•  SQL to compute running average 
–  extremely slow on benchmarks with 10,000+ data points 
–  add calculation of running average to script that reads/loads results 

select dtl1.duration as duration,       !

       dtl1.thruput as interval_tps,       !

       avg(dtl2.thruput) as avg_tps      !

from benchmark_detail dtl1,     !

     benchmark_detail dtl2!

where dtl1.bench_id = 1 and!

      dtl2.bench_id = dtl1.bench_id and!

      dtl2.duration <= dtl1.duration!

group by dtl1.duration, dtl1.thruput;!
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Visualization - gnuplot 

•  I’ve been graphing benchmark results in Excel for years 
•  Last year someone asked me why don’t just learn gnuplot 
•  OMG! 
•  If you don't use it, start using it, today. 

set terminal pngcairo size 800,600!

set xlabel "Inserted Rows”!

set ylabel "Inserts/Second”!

set title "iiBench Performance - Old vs. New"!

set output ”benchmark.png”!

plot "./old.txt" using 1:6 with lines ti "Old",     
"./new.txt" using 1:6 with lines ti "New"!
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Idle machines could be benchmarking 

•  Obvious benchmarks 
–  increase cache size 
–  buffered vs. direct IO 
–  RAID levels 
–  File systems 
–  rotating disk vs. ssd vs. flash 
–  InnoDB : search the web for ideas  
–  TokuDB : compression type, basement node size 

•  Not so obvious 
–  decrease cache size 
–  alternative memory allocators 
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Level : Advanced 
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Level : Advanced 

Everything that follows is 
on my wish list...	
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Additional data capture 

•  Find a data capture tool that gathers more server metrics 
– collectd 

•  Graph and review the data 
– make it actionable 

•  Another gnuplot moment? 
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Continuous Integration 

•  Implement CI server (Jenkins?) 
– Nightly build 
– Distribute and execute benchmarks across group of 

servers 
– Graph results 
– Compare to prior day 
– Alert if "threshold" change from previous day, or over 

previous period 
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Self-service 

MySQL Version 
TokuDB Version 
Storage Engine 
Benchmark 
Num Tables 
Num Rows 
Compare To 
 

Send request to CI 
server	
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Automated anomaly detection 

•  Problem is easy to see, not always easy to detect 
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PSA 

"Many benchmarks are like magic tricks. When you know how 
the results were achieved, you are no longer impressed.” 

twitter.com/GregRahn/status/263771033583104000 
 

Show the whole picture 
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Wrapping it up 

 
Dive In. 

 
Benchmark Everything. 

 
Learn and Share. 
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Please rate this session. 

 
 

Feedback is important! 
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Tokutek is hiring! 

 
 

Position: QA++ 
 

Testing 
Support 

Benchmarking 
Release Engineering 
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Questions? 

 
Tim Callaghan 

tim@tokutek.com (email) 
@tmcallaghan (twitter) 

www.tokutek.com/tokuview (blog) 
 

slides at  
http://www.slideshare.net/tmcallaghan/20130424-perconalivebenchmarking 

 
 


