
1

Creating a Benchmark
Infrastructure

That Just Works

Tim Callaghan!
VP/Engineering, Tokutek!
email: tim@tokutek.com!
twitter: @tmcallaghan!

!
!

April 24, 2013

2

What is this all about?

•  Benchmark “infrastructure”
is never done.
•  It is a constantly evolving

journey.
– 20+ years for me!

•  Hopefully you’ll learn a few
new things today.
•  Raise your hand.
•  Share what you learn with

others.

3

Who am I?

•  I’m not Mark.
•  He’s that guy at Facebook.
•  Sorry if you expected Mark.

Mark	

 Me	

4

Who am I?

“Mark Callaghan’s lesser-known but nonetheless

smart brother.”

[C. Monash, May 2010]

www.dbms2.com/2010/05/25/voltdb-finally-launches

5

Who am I? Seriously.

My Background
•  Internal development (Oracle), 92-99
•  SaaS development (Oracle), 99-09
•  Field engineering (VoltDB), 09-11
•  VP Engineering (Tokutek), 11-present

Meaning
•  development, administration, management,

infrastructure, testing, product management,
support

6

What is benchmarking?

7

What is benchmarking?

Wikipedia
“Benchmarking is used to measure performance
using a specific indicator ([transactions per second,
transactional latency, etc]) resulting in a metric of
performance that is then compared to others.”

My Interpretation

“Run something while taking a lot of measurements,
make changes, rerun and compare.”

8

Generic Benchmarking Process

•  Prepare for benchmark
– Hardware, operating system, software

•  Run Benchmark
– Record data as you go

•  Save Results
– Flat files, database tables

•  Cleanup
– Leave things as you found them

•  Analyze results
– Look for positive and negative differences

•  Change something
– 1 thing at a time if possible

•  Repeat
– A lot

9

My first benchmark

Commodore-64 (1985)
•  Programming graphics demos
•  Needed to make sprites “bounce”

•  Timed round-trips using my stopwatch
•  Using COS() worked, but was slow
•  Found that a lookup table was much faster
– COS(0)=1, COS(1)=.9998, …

•  A benchmarker was born!

10

Now I’m an Addict (28 years later)

•  TokuDB v5.2 – 01/2012
– End of release (code-freeze)
– 3 benchmarks
– 1 platform (Centos5), Disk only
– By hand: start mysql, run benchmark, graph results

•  TokuDB v6.6 – 12/2012
– Each major development effort
– 9 benchmarks
– 2 platforms (Centos5 and Centos6), Disk and SSD
– Automated: single script produces full comparison

•  Soon
– Nightly
– 9+ benchmarks

o Linkbench and many other new ideas

11

Important benchmarking skills

•  Infrastructure
– Hardware
– Operating Systems

•  Software Development
– Benchmark applications are applications
– Bash scripting

•  Communications
– Displaying results, finding trends
– Blogging

•  You are only as good as your worst skill
– They all matter

12

Why is frequent benchmarking important?

•  One improvement can mask one drop

13

Why is frequent benchmarking important?

•  Find issues while there is still time to deal with
them
– Avoid creating a “fix last release’s performance
regression” ticket

14

Why is frequent benchmarking important?

•  Developers <3 data
– Satisfaction of immediate feedback for efforts
– (or) find out things are worse

15

Level : Beginner

16

Basic configuration

•  Start with a “known good” environment
– Learn from what others have shared about server and

MySQL configuration, many online resources exist
– Vadim Tkachenko @ Percona,

http://www.mysqlperformanceblog.com/author/vadim/
– Dimitri Kravtchuk @ Oracle, http://dimitrik.free.fr/blog/
– Too many to list them all.
– I always create an extra file system where benchmarking

occurs
o Treat it as if it will not be there tomorrow
o Enables rebuilding/changing file systems without losing
important work

17

Benchmarking your equipment

•  Quick tests to ensure configuration is correct
•  If possible, compare to existing equipment
•  Sysbench CPU

–  sysbench --test=cpu --cpu-max-prime=20000 run

•  Sysbench memory
–  sysbench --test=memory --memory-block-size=1K --memory-scope=global --memory-total-size=100G --memory-

oper=read run
–  sysbench --test=memory --memory-block-size=1K --memory-scope=global --memory-total-size=100G --memory-

oper=write run
•  Sysbench IO

–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-num=1 prepare
–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-extra-flags=direct --file-num=1 --max-

requests=50000 run

–  sysbench --test=fileio --file-total-size=10G --file-test-mode=rndrw --file-num=1 cleanup
•  Sysbench OLTP

–  sysbench –test=oltp -oltp_tables_count=16 --oltp-table-size=500000 prepare

–  sysbench –test=oltp -oltp_tables_count=16 --oltp-table-size=500000 prepare

18

What should I measure?

•  Start with throughput and latency
– Throughput = the number of operations per specific time

interval, often referred to as transactions per second (TPS)
– Latency = the amount of time required to satisfy a single

transaction
•  Use Intervals
– Benchmarks generally run for several minutes or hours,

throughput and latency should be captured in smaller
windows (minutes or seconds).

– Interval data provides the information needed to compute
cumulative averages, min, max…

19

Where do you go with questions?

•  Ask the benchmark owner
– sysbench = Percona (launchpad)
– Iibench = Mark Callaghan (launchpad)
– tpc-c = Percona (launchchpad), many other

implementations exist
•  www.stackoverflow.com / www.serverfault.com

20

The power of 2 (but buy 3 if you can)

•  Historical results are critical
– (but sometimes you just need to start over)

o Equipment dies or becomes irrelevant

21

The power of 3 (for a while)

•  Run 3 times until you regularly produce consistent results

22

Visualization, for now

•  Use Excel or LibreOffice

23

Hacks

•  Low tech solutions are fine
– Franken-switch – partition detection benchmarking

Find hardware	

Buy it	

Install it	

Configure it	

Run benchmarks	

Vs.	

24

Ready-to-go MySQL

•  Evolutionary process – I’ve probably done each > 1000 times
–  Phase 1 : before each benchmark manually create MySQL and start

o  untar MySQL
o  copy my.cnf from known good directory
o  bin/mysql_install_db
o  bin/mysqld_safe

–  Phase 2 : for each new build, unpack and repack MySQL (ready-to-go)
o  in empty folder : copy my.cnf, fresh-db, and MySQL tar

o  ./fresh-db (untars MySQL, copies my.cnf, runs install, starts/stops mysql)
o  rm –rf mysql-test sql-bench
o  tar xzvf $ARCHIVE_DIR/blank-toku610-mysql-5.5.28.tar.gz .

–  Phase 3 : for each new build, unpack and repack MySQL (ready-to-go)
o  in empty folder : copy MySQL tar
o  gf blank-toku610-mysql-5.5.28.tar.gz (bash script that does everything else)

–  Phase 4 : at some point
o  in empty folder : copy MySQL tar
o  gf2 (bash script that does everything else, including detecting version of TokuDB and

MySQL/MariaDB)

25

Useful technologies

•  rsync
–  Synchronize your files with benchmark servers

•  nfs
–  (If you can) make all of your files available to your benchmark servers

without needing to manually rsync

•  dropbox
–  Easy way to synchronize your files with EC2 benchmark servers
–  (thanks for Amrith Kumar @ ParElastic for this tip)

26

Exit throughput?

•  Allow your benchmark to stabilize
•  Average final <x> transactions or <y> minutes

27

Trust no one

•  If possible, dedicated benchmarking equipment
•  Prior to starting, check for clean environment (users,

processes)
– users
– ps aux | grep mysqld
–  ls /tmp/*.sock

•  Periodically check for the duration of benchmark run
•  Leave it as you found it
– Shutdown MySQL
– Kill any stray monitoring scripts
– Delete all MySQL files

28

Level : Intermediate

29

Environment variables

•  I find it convenient for my benchmarking scripts to pass
information using environment variables
–  Command line arguments can be used as well

•  Create a commonly named set of environment variables for all
machines.

•  Load it on login (add to .bashrc)
–  source ~/machine.config

export machine_name=mork!

export tokudb_cache=24G!

export innodb_cache=24G!

export storage_type=disk!

export benchmark_directory=/data/benchmark!

30

Scripting 1

•  Lets do some bash, simple Sysbench runner

#! /bin/bash!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

31

Scripting 2

•  Make sure an environment variable is defined

#! /bin/bash!

!

if [-z "$machine_name"]; then!

 echo "Need to set machine_name" !

 exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

32

Scripting 3

•  Make sure a directory exists

#! /bin/bash!

!

if [! -d "$benchmark_results_dir"]; then !

 echo "Need to create directory $benchmark_results_dir" !

 exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

33

Scripting 4

•  Make sure a directory is empty

#! /bin/bash!

!

if ["$(ls -A $benchmark_results_dir)"]; then!

 echo "$benchmark_results_dir has files, cannot run script”!

 exit 1!

fi!

!

num_tables=16!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

34

Scripting 5

•  Default values

#! /bin/bash!

!

if [-z "$num_tables"]; then!

 export num_tables=16!

fi!

!

sysbench –test=oltp num_tables=${num_tables} > results.txt!

tar ${benchmark_results_dir}/${machine_name}.tar results.txt!

35

Scripting 6 – scripts calling scripts

controller.bash
#! /bin/bash!

if [-z "$mysql"]; then!

 export mysql=blank-toku701-mysql-5.5.30!

fi!

if [-z "$num_tables"]; then!

 export num_tables=16!

fi!

for numThreads in 1 2 4 8 16 32 64; do!

 export clientCount=${numThreads}!

 ./runner.bash!

done!

!

runner.bash
#! /bin/bash!

if [-z "$mysql"]; then!

 echo "Need to set mysql”; exit 1!

fi!

if [-z "$num_tables"]; then!

 export num_tables=16!

fi!

if [-z ”$clientCount"]; then!

 export clientCount=64!

fi!

mkdb ${mysql} #unpack and start ready-to-go-mysql!

sysbench –test=oltp num_tables=${num_tables} –num_threads=${clientCount} > results.txt!

tar ${benchmark_results_dir}/${machine_name}-${clientCount}.tar results.txt!

mstop #shutdown mysql and cleanup!

!

36

Scripting 7 – scripts calling scripts calling scripts

multibench.bash

#! /bin/bash!

for mysqlType in mysql mariadb ; do!

 export mysql=blank-toku701-${mysqlType}-5.5.30!

 sysbench-directory/controller.bash!

 iibench-directory/controller.bash!

 for numWarehouses in 100 1000 ; do!

 export num_warehouses=${numWarehouses}!

 tpcc-directory/controller.bash!

 done!

done!
!

37

Add more measurements

•  IO (iostat)
•  CPU/Memory (ps)
•  MySQL engine status
– “show engine <storage-engine-name> status;”

•  MySQL global status
– “select * from information_schema.global_status;”

•  You are only measuring too much when it affects the
benchmark

•  You never know when it will be helpful
•  De-dupe
– Many counters are the same at each interval, save space by

only capturing values that changed since the last
measurement

38

Optimize everything not benchmarked

•  Spend as little time as possible on surrounding steps
•  Example : load Sysbench data, 16 tables, 50 million rows per

table
– trickle load

o client application generating insert statements
o 5+ hours to load

– bulk load
o after trickle loading, mysqldump each table to TSV
o “load data infile …”
o 70 minutes to load

– preloaded database
o save MySQL data folder after bulk loading
o “cp –r” prior to running benchmark
o 10 minutes to load

39

Anomalies

•  Graph results, review graphs regularly
–  Huge dip in the middle of the benchmark
–  Exit throughput was unaffected

40

Don’t automate too early

•  You’ll end up automating the wrong things
•  You’ll over-engineer your automation
•  Never automate “until it hurts”

41

Put results into a database

•  Create a simple schema for historical results
•  benchmark_header
–  bench_id
–  name (sysbench, tpcc, iibench)
–  duration (# seconds | # rows)
–  thruput (use exit throughput)
–  attr1 (# sysbench rows | # tpc-c warehouses | # iibench rows)
–  attr2 (# sysbench tables)
–  clients (concurrency)
–  machine_name (server)

•  benchmark_detail
–  bench_id
–  duration (# seconds | # rows)
–  thruput (interval)
–  latency (interval)
–  throughput_avg (cumulative)

•  create script to read benchmark logs and load database
•  run immediately as benchmark ends

42

Pre-compute interesting numbers

•  Pre-compute interesting numbers
•  SQL to compute running average
–  extremely slow on benchmarks with 10,000+ data points
–  add calculation of running average to script that reads/loads results

select dtl1.duration as duration, !

 dtl1.thruput as interval_tps, !

 avg(dtl2.thruput) as avg_tps !

from benchmark_detail dtl1, !

 benchmark_detail dtl2!

where dtl1.bench_id = 1 and!

 dtl2.bench_id = dtl1.bench_id and!

 dtl2.duration <= dtl1.duration!

group by dtl1.duration, dtl1.thruput;!

43

Visualization - gnuplot

•  I’ve been graphing benchmark results in Excel for years
•  Last year someone asked me why don’t just learn gnuplot
•  OMG!
•  If you don't use it, start using it, today.

set terminal pngcairo size 800,600!

set xlabel "Inserted Rows”!

set ylabel "Inserts/Second”!

set title "iiBench Performance - Old vs. New"!

set output ”benchmark.png”!

plot "./old.txt" using 1:6 with lines ti "Old",
"./new.txt" using 1:6 with lines ti "New"!

44

Idle machines could be benchmarking

•  Obvious benchmarks
–  increase cache size
–  buffered vs. direct IO
–  RAID levels
–  File systems
–  rotating disk vs. ssd vs. flash
–  InnoDB : search the web for ideas
–  TokuDB : compression type, basement node size

•  Not so obvious
–  decrease cache size
–  alternative memory allocators

45

Level : Advanced

46

Level : Advanced

Everything that follows is
on my wish list...	

47

Additional data capture

•  Find a data capture tool that gathers more server metrics
– collectd

•  Graph and review the data
– make it actionable

•  Another gnuplot moment?

48

Continuous Integration

•  Implement CI server (Jenkins?)
– Nightly build
– Distribute and execute benchmarks across group of

servers
– Graph results
– Compare to prior day
– Alert if "threshold" change from previous day, or over

previous period

49

Self-service

MySQL Version
TokuDB Version
Storage Engine
Benchmark
Num Tables
Num Rows
Compare To

Send request to CI
server	

50

Automated anomaly detection

•  Problem is easy to see, not always easy to detect

51

PSA

"Many benchmarks are like magic tricks. When you know how
the results were achieved, you are no longer impressed.”

twitter.com/GregRahn/status/263771033583104000

Show the whole picture

52

Wrapping it up

Dive In.

Benchmark Everything.

Learn and Share.

53

Please rate this session.

Feedback is important!

54

Tokutek is hiring!

Position: QA++

Testing
Support

Benchmarking
Release Engineering

55

Questions?

Tim Callaghan

tim@tokutek.com (email)
@tmcallaghan (twitter)

www.tokutek.com/tokuview (blog)

slides at
http://www.slideshare.net/tmcallaghan/20130424-perconalivebenchmarking

