A . .
IS;IE:\\\\QIY{ Indexing Big Data Tokui-ek

Michael A. Bender

22t

data ingestion

answers

data indexing query processor

" |queries

The problem with big data is microdata

Microdata is small data.

The most intractable
data consists of lots of
small pieces.

Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.

queries

=
AL

N - q g ﬁ
data \%)

K _N

ingestion) @ &mm Nl |
© | - |answers
¢‘@ " ! | =

(@

query processor

data indexing

Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.

e HPC workloads use the names of many small files, e.g., to describe
experiment metadata.

queries

A \ ;“ "’"‘-" '-'.“
@G>) =
ingestion : Q R =) A N
§ ff’\“r u\.'g <: . -
= < \ . - |answers
2 ' \ =2,

i~
(araz

query processor

data indexing

Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.

e HPC workloads use the names of many small files, e.g., to describe
experiment metadata.

Small updates inside large files.

® PLFS is an HPC file system that logs checkpoint updates because
applying them directly is too slow.

queries

data
ingestion

answers

query processor

data indexing

The microdata problem is getting worse

Example: Time to fill a disk in 1973, 2010, 2022.
¢ |0og data sequentially versus index data in B-tree.

Time to fill disk
using a B-tree
(row size 1K)

Time to log

Bandwidth Access Time data on disk

835KB/s 39s 975s

| 50MB/s 5.5h 347d

|.05GB/s 2.4d 70y

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files per second

Traverse directory hierarchies fast (1s -R)

B-trees would require at least hundreds of disk
drives.

HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files per second

Traverse directory hierarchies fast (1s -R)

B-trees would require at least hundreds of disk
drives.

Parallel computing is about high
performance. To get high performance,
we need high-performance I/0.

So that’s the
bad news...

This is not a
doom-and-
gloom talk.

\
N \)
\ .

Rractal-treg®
inde U\

We can solve the
microdata
problem with the
right kind of data
structures +

fundamental
research.

Write-optimized data structures can help

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

f B=1024, then insert speedup is B/logB=100.
Hardware trends mean bigger B, bigger speedup.

_ess than 1 /O per insert because microdata is
transferred in parallel in data blocks.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

| Ox-100x faster inserts

Optimal SearCh_lnsert TradeOﬂ: [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff O (logHBs N) O (logy4 5= N)
(function of €) Bl~e

B(;tzr’le)e O (logg N) O (logg N)

e=1/2 O(logB N)

O (log N)

llustration of Optimal Tradeoft s, Fagererg s

Optimal Curve

(7))
9
|
()
&
)
=
O
(a8

Inserts

|||UStrat|Oﬂ Of Optlmal Tl’adeOﬂ: [Brodal, Fagerberg 03]

Target of opportunity

B-tree w
Optimal Curve
Insertions improve by 7\

| 0x-100x with
almost no loss of point-
query performance

(7))
9
|
()
&
)
=
O
(a8

Inserts

What the world looks like

[| [|

What the world looks like

Insert/point query asymmetry
¢ Inserts can be fast: >50K high-entropy writes/sec/disk.

® Point queries are necessarily slow: <200 high-entropy
reads/sec/disk.

We are used to reads and writes having about the

same cost, but writing iIs easier than reading.

' '—%
' |
-
o 9‘ -
X =
4 '<
> 4
y

What the world looks like

Insert/point query asymmetry
¢ Inserts can be fast: >50K high-entropy writes/sec/disk.

® Point queries are necessarily slow: <200 high-entropy
reads/sec/disk.

We are used to reads and writes having about the

same cost, but writing iIs easier than reading.

' '—%
' |
-
o 9‘ -
X =
4 '<
> 4
y

How can we revisit system design in light of this
asymmetry?

The best read-optimization is write-optimization

The right index (e.g., database index=data ordering)
makes queries run fast.

e E.g., find or spotlight on a file system can be fast if the data is
iIndexed correctly.

¢ \Write-optimized structures maintain indexes efficiently.

queries

(\ : n--‘. __,.“
"' \%A%)
data -
ingestion) © =), \ |
). f/(;: ; % : ¢ =
>Y | : answers
¢“® " \ | 2.

s
(@ z?

query processor

data indexing

The best read-optimization is write-optimization

The right index (e.g., database index=data ordering)
makes queries run fast.

e E.g., find or spotlight on a file system can be fast if the data is
iIndexed correctly.

¢ \Write-optimized structures maintain indexes efficiently.

Fast writes is a currency we use to accelerate queries.

Better indexing means faster queries.
(\»

queries

> ‘ : "'""" o D
(> =
= ,) \%)

data el
ingestion : Q R =) A |l Lt
§ ff’\“r u\.'g <= . 2

= < \ . - |answers

2 ' \ =2,

s
(@@L

query processor

data indexing

. ractal-tr: N A § 5 Cha"enge

QA index’. N =

— 7

7 NisMurea Replace traditional

A structures (e.g., B-
trees), with write-
optimized
structures in
parallel/cloud file
systems and end-
end databases.

Our progress building write-optimized systems

TokuDB

e A write-optimized storage engine for the MySQL
e Commercial product from Tokutek

TokuFS [Esmet, Bender, Farach-Colton, Kuszmaul 12]
¢ A file-system prototype
¢ >20K file creates/sec
e very fast 1s -R

e HEC grand challenges on a cheap disk

Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.

Example:
e return error when a duplicate key is inserted.
¢ return # elements removed on a delete.

These “cryptosearches” throttle insertions
down to the performance of B-trees.

¢ \Write-optimized data structures run quickly because
iInserts don’t put elements directly in their final
positions, so that you can insert without incurring a disk
I/0, even in the worst case and for large data sets.

Redesign systems in light of search/point query
asymmetry

Redesign systems to avoid cryptosearches.

e Design new algorithms for concurrency control,
transactional mechanisms, crash safety, etc, in light of
the new performance characteristics.

® Redesign existing APIs.

Some cryptosearches, cannot be avoided.

® How can we mitigate their damage (e.q., Bloom filters,
SSDs)?

Highly parallel/concurrent write-optimized structures

Write-optimized structures are CPU-bound
even for workloads on which traditional storage
systems are |I/0 bound.

Need highly concurrent, multithreaded write-
optimized data structures.

Summary of Talk

Microdata in parallel and high-end computing:
¢ \We need high-performance 1/0.

How foundational parallelism research helps:
e Better write-optimized data structures.
e | ower bounds.
e Algorithms for concurrency control, transactions.
e Multithreading + high concurrency.

