
oy vey

???
???

???

data indexing

Big data problem

query processor

queries

answers

???

365

42

data ingestion

Indexing Big Data
Michael A. Bender

Important and universal problem.
Hot topic.

Don’t Thrash: How to Cache Your Hash in Flash

The problem with big data is microdata
Microdata is small data.
The most intractable
data consists of lots of
small pieces.

Don’t Thrash: How to Cache Your Hash in Flash

Microdata is everywhere
Metadata≈microdata.

• Even when data has big chunks, metadata is small.

data indexing query processor

queries

???
42

answers

data
ingestion

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

Don’t Thrash: How to Cache Your Hash in Flash

Microdata is everywhere
Metadata≈microdata.

• Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.
• HPC workloads use the names of many small files, e.g., to describe

experiment metadata.

data indexing query processor

queries

???
42

answers

data
ingestion

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

Don’t Thrash: How to Cache Your Hash in Flash

Microdata is everywhere
Metadata≈microdata.

• Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.
• HPC workloads use the names of many small files, e.g., to describe

experiment metadata.

Small updates inside large files.
• PLFS is an HPC file system that logs checkpoint updates because

____ applying them directly is too slow.

data indexing query processor

queries

???
42

answers

data
ingestion

• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately.

Don’t Thrash: How to Cache Your Hash in Flash

The microdata problem is getting worse

Example: Time to fill a disk in 1973, 2010, 2022.
• log data sequentially versus index data in B-tree.

Better data structures may be a luxury now, but
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log
data on disk

Time to fill disk
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

Don’t Thrash: How to Cache Your Hash in Flash

HEC FSIO Grand Challenges
Store 1 trillion files
Create tens of thousands of files per second
Traverse directory hierarchies fast (ls -R)

B-trees would require at least hundreds of disk
drives.

Don’t Thrash: How to Cache Your Hash in Flash

HEC FSIO Grand Challenges
Store 1 trillion files
Create tens of thousands of files per second
Traverse directory hierarchies fast (ls -R)

B-trees would require at least hundreds of disk
drives.

Parallel computing is about high
performance. To get high performance,
we need high-performance I/O.

NSF Workshop on Research Directions in Principles of Parallel Computing

This is not a
doom-and-
gloom talk.

So that’s the
bad news...

NSF Workshop on Research Directions in Principles of Parallel Computing

Hope
We can solve the
microdata
problem with the
right kind of data
structures +
fundamental
research.

Fractal-tree®
index

LSM
tree

Bɛ-tree

Don’t Thrash: How to Cache Your Hash in Flash

Write-optimized data structures can help

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert because microdata is

transferred in parallel in data blocks.

B-tree Some write-optimized
structures

Insert/delete O(logBN)=O() O()logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff

(function of ɛ)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)

ɛ=1/2

O

✓
logN

B

◆

O (logN)ɛ=0

O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

O (logB N)

10
x-

10
0x

 fa
st

er
 in

se
rt

s

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Don’t Thrash: How to Cache Your Hash in Flash

Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts

Po
in

t
Q

ue
ri

es

FastSlow

Sl
ow

Fa
st

Logging

B-tree

Logging

Optimal Curve

Insertions improve by
10x-100x with

almost no loss of point-
query performance

Target of opportunity

What the world looks like
and research directions

Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk.
• Point queries are necessarily slow: <200 high-entropy

reads/sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

Reading is hard.Writing is easier.

Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk.
• Point queries are necessarily slow: <200 high-entropy

reads/sec/disk.

We are used to reads and writes having about the
same cost, but writing is easier than reading.

How can we revisit system design in light of this
asymmetry?

Reading is hard.Writing is easier.

Don’t Thrash: How to Cache Your Hash in Flash

The best read-optimization is write-optimization
The right index (e.g., database index=data ordering)
makes queries run fast.

• E.g., find or spotlight on a file system can be fast if the data is
indexed correctly.

• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data
ingestion

Don’t Thrash: How to Cache Your Hash in Flash

The best read-optimization is write-optimization
The right index (e.g., database index=data ordering)
makes queries run fast.

• E.g., find or spotlight on a file system can be fast if the data is
indexed correctly.

• Write-optimized structures maintain indexes efficiently.

Fast writes is a currency we use to accelerate queries.
Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data
ingestion

Don’t Thrash: How to Cache Your Hash in Flash

Fractal-tree
index

LSM tree

Bɛ-tree

ChallengeChallenge
Replace traditional
structures (e.g., B-
trees), with write-
optimized
structures in
parallel/cloud file
systems and end-
end databases.

15

Don’t Thrash: How to Cache Your Hash in Flash

Our progress building write-optimized systems

TokuDB
• A write-optimized storage engine for the MySQL
• Commercial product from Tokutek

TokuFS
• A file-system prototype
• >20K file creates/sec
• very fast ls -R
• HEC grand challenges on a cheap disk

[Esmet, Bender, Farach-Colton, Kuszmaul 12]

Don’t Thrash: How to Cache Your Hash in Flash

Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.
Example:

• return error when a duplicate key is inserted.
• return # elements removed on a delete.

These “cryptosearches” throttle insertions
down to the performance of B-trees.

• Write-optimized data structures run quickly because
inserts don’t put elements directly in their final
positions, so that you can insert without incurring a disk
I/O, even in the worst case and for large data sets.

Don’t Thrash: How to Cache Your Hash in Flash

Redesign systems in light of search/point query
asymmetry

Redesign systems to avoid cryptosearches.
• Design new algorithms for concurrency control,

transactional mechanisms, crash safety, etc, in light of
the new performance characteristics.

• Redesign existing APIs.

Some cryptosearches, cannot be avoided.
• How can we mitigate their damage (e.g., Bloom filters,

SSDs)?

3

Don’t Thrash: How to Cache Your Hash in Flash

Highly parallel/concurrent write-optimized structures

Write-optimized structures are CPU-bound
even for workloads on which traditional storage
systems are I/O bound.

Need highly concurrent, multithreaded write-
optimized data structures.

4

Don’t Thrash: How to Cache Your Hash in Flash

Summary of Talk
Microdata in parallel and high-end computing:

• We need high-performance I/O.

How foundational parallelism research helps:
• Better write-optimized data structures.
• Lower bounds.
• Algorithms for concurrency control, transactions.
• Multithreading + high concurrency.

write-optimized

