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The problem with big data is microdata

Microdata is small data.

The most intractable
data consists of lots of
small pieces.




Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.
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Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.

e HPC workloads use the names of many small files, e.g., to describe
experiment metadata.
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Microdata is everywhere

Metadata=microdata.
e Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems.

e HPC workloads use the names of many small files, e.g., to describe
experiment metadata.

Small updates inside large files.

® PLFS is an HPC file system that logs checkpoint updates because
applying them directly is too slow.
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The microdata problem is getting worse

Example: Time to fill a disk in 1973, 2010, 2022.
¢ |0og data sequentially versus index data in B-tree.

Time to fill disk
using a B-tree
(row size 1K)

Time to log

Bandwidth Access Time data on disk

835KB/s 39s 975s

| 50MB/s 5.5h 347d

|.05GB/s 2.4d 70y

Better data structures may be a luxury now, but
they will be essential by the decade’s end.




HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files per second

Traverse directory hierarchies fast (1s -R)

B-trees would require at least hundreds of disk
drives.




HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files per second

Traverse directory hierarchies fast (1s -R)

B-trees would require at least hundreds of disk
drives.

Parallel computing is about high
performance. To get high performance,
we need high-performance I/0.




So that’s the
bad news...

This is not a
doom-and-
gloom talk.
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We can solve the
microdata
problem with the
right kind of data
structures +

fundamental
research.




Write-optimized data structures can help

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00],
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal,
Demaine, Fineman, lacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11].

Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB.

Some write-optimized
structures

Insert/delete

f B=1024, then insert speedup is B/logB=100.
Hardware trends mean bigger B, bigger speedup.

_ess than 1 /O per insert because microdata is
transferred in parallel in data blocks.



http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html

| Ox-100x faster inserts

Optimal SearCh_lnsert TradeOﬂ: [Brodal, Fagerberg 03]

insert point query

Optimal
tradeoff O (logHBs N ) O (logy4 5= N)
(function of €) Bl~e

B(;tzr’le)e O (logg N) O (logg N)

e=1/2 O(logB N)

O (log N)



llustration of Optimal Tradeoft s, Fagererg s

Optimal Curve
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|||UStrat|Oﬂ Of Optlmal Tl’adeOﬂ: [Brodal, Fagerberg 03]

Target of opportunity

B-tree w
Optimal Curve
Insertions improve by 7\

| 0x-100x with
almost no loss of point-
query performance
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What the world looks like
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What the world looks like

Insert/point query asymmetry
¢ Inserts can be fast: >50K high-entropy writes/sec/disk.

® Point queries are necessarily slow: <200 high-entropy
reads/sec/disk.

We are used to reads and writes having about the

same cost, but writing iIs easier than reading.
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What the world looks like

Insert/point query asymmetry
¢ Inserts can be fast: >50K high-entropy writes/sec/disk.

® Point queries are necessarily slow: <200 high-entropy
reads/sec/disk.

We are used to reads and writes having about the

same cost, but writing iIs easier than reading.
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How can we revisit system design in light of this
asymmetry?




The best read-optimization is write-optimization

The right index (e.g., database index=data ordering)
makes queries run fast.

e E.g., find or spotlight on a file system can be fast if the data is
iIndexed correctly.

¢ \Write-optimized structures maintain indexes efficiently.
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The best read-optimization is write-optimization

The right index (e.g., database index=data ordering)
makes queries run fast.

e E.g., find or spotlight on a file system can be fast if the data is
iIndexed correctly.

¢ \Write-optimized structures maintain indexes efficiently.

Fast writes is a currency we use to accelerate queries.

Better indexing means faster queries.
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7 NisMurea Replace traditional

A structures (e.g., B-
trees), with write-
optimized
structures in
parallel/cloud file
systems and end-
end databases.




Our progress building write-optimized systems

TokuDB

e A write-optimized storage engine for the MySQL
e Commercial product from Tokutek

TokuFS [Esmet, Bender, Farach-Colton, Kuszmaul 12]
¢ A file-system prototype
¢ >20K file creates/sec
e very fast 1s -R

e HEC grand challenges on a cheap disk




Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.

Example:
e return error when a duplicate key is inserted.
¢ return # elements removed on a delete.

These “cryptosearches” throttle insertions
down to the performance of B-trees.

¢ \Write-optimized data structures run quickly because
iInserts don’t put elements directly in their final
positions, so that you can insert without incurring a disk
I/0, even in the worst case and for large data sets.




Redesign systems in light of search/point query
asymmetry

Redesign systems to avoid cryptosearches.

e Design new algorithms for concurrency control,
transactional mechanisms, crash safety, etc, in light of
the new performance characteristics.

® Redesign existing APIs.

Some cryptosearches, cannot be avoided.

® How can we mitigate their damage (e.q., Bloom filters,
SSDs)?




Highly parallel/concurrent write-optimized structures

Write-optimized structures are CPU-bound
even for workloads on which traditional storage
systems are |I/0 bound.

Need highly concurrent, multithreaded write-
optimized data structures.




Summary of Talk

Microdata in parallel and high-end computing:
¢ \We need high-performance 1/0.

How foundational parallelism research helps:
e Better write-optimized data structures.
e | ower bounds.
e Algorithms for concurrency control, transactions.
e Multithreading + high concurrency.




