
oy vey

???
???

???

data indexing

Big data problem

query processor

queries

answers

???

365

42

data ingestion

Indexing Big Data
Michael A. Bender

Important and universal problem.
Hot topic. 
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The problem with big data is microdata 
Microdata is small data.
The most intractable 
data consists of lots of 
small pieces.
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Microdata is everywhere
Metadata≈microdata. 

• Even when data has big chunks, metadata is small.
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• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately. 
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Microdata is everywhere
Metadata≈microdata. 

• Even when data has big chunks, metadata is small.

Small files in parallel/cloud file systems. 
• HPC workloads use the names of many small files, e.g., to describe 

experiment metadata. 

Small updates inside large files.
• PLFS is an HPC file system that logs checkpoint updates because 

____ applying them directly is too slow.
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• Typical record of all kinds of metadata is < 150 bytes.
• Different parts of metadata are accessed separately. 
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The microdata problem is getting worse 

Example: Time to fill a disk in 1973, 2010, 2022. 
• log data sequentially versus index data in B-tree.

Better data structures may be a luxury now, but 
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log 
data on disk 

Time to fill disk 
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y
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HEC FSIO Grand Challenges
Store 1 trillion files
Create tens of thousands of files per second
Traverse directory hierarchies fast (ls -R)

B-trees would require at least hundreds of disk 
drives.
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HEC FSIO Grand Challenges
Store 1 trillion files
Create tens of thousands of files per second
Traverse directory hierarchies fast (ls -R)

B-trees would require at least hundreds of disk 
drives.

Parallel computing is about high 
performance. To get high performance, 
we need high-performance I/O. 



NSF Workshop on Research Directions in Principles of Parallel Computing

This is not a 
doom-and-
gloom talk. 

So that’s the 
bad news...



NSF Workshop on Research Directions in Principles of Parallel Computing

Hope
We can solve the 
microdata 
problem with the 
right kind of data 
structures + 
fundamental 
research. 

Fractal-tree® 
index

LSM 
tree

Bɛ-tree
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Write-optimized data structures can help

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert because microdata is 

transferred in parallel in data blocks.

B-tree Some write-optimized 
structures

Insert/delete O(logBN)=O(       ) O(       )logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. 
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html


Don’t Thrash: How to Cache Your Hash in Flash

Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]

insert point query
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]
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Insertions improve by 
10x-100x with 

almost no loss of point-
query performance

Target of opportunity



What the world looks like 
and research directions

  



Don’t Thrash: How to Cache Your Hash in Flash

What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk. 
• Point queries are necessarily slow: <200 high-entropy 

reads/sec/disk.

We are used to reads and writes having about the 
same cost, but writing is easier than reading. 

Reading is hard.Writing is easier.
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What the world looks like
Insert/point query asymmetry

• Inserts can be fast: >50K high-entropy writes/sec/disk. 
• Point queries are necessarily slow: <200 high-entropy 

reads/sec/disk.

We are used to reads and writes having about the 
same cost, but writing is easier than reading. 

How can we revisit system design in light of this 
asymmetry? 

Reading is hard.Writing is easier.
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The best read-optimization is write-optimization
The right index (e.g., database index=data ordering) 
makes queries run fast. 

• E.g., find or spotlight on a file system can be fast if the data is 
indexed correctly.

• Write-optimized structures maintain indexes efficiently.
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The best read-optimization is write-optimization
The right index (e.g., database index=data ordering) 
makes queries run fast. 

• E.g., find or spotlight on a file system can be fast if the data is 
indexed correctly.

• Write-optimized structures maintain indexes efficiently.

Fast writes is a currency we use to accelerate queries.
Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data 
ingestion
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Fractal-tree 
index

LSM tree

Bɛ-tree

ChallengeChallenge
Replace traditional 
structures (e.g., B-
trees), with write-
optimized 
structures in 
parallel/cloud file 
systems and end-
end databases.

15
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Our progress building write-optimized systems

TokuDB
• A write-optimized storage engine for the MySQL
• Commercial product from Tokutek

TokuFS
• A file-system prototype
• >20K file creates/sec 
• very fast ls -R
• HEC grand challenges on a cheap disk 

[Esmet, Bender, Farach-Colton, Kuszmaul 12]
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Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.
Example: 

• return error when a duplicate key is inserted. 
• return # elements removed on a delete.  

These “cryptosearches” throttle insertions 
down to the performance of B-trees.

• Write-optimized data structures run quickly because 
inserts don’t put elements directly in their final 
positions, so that you can insert without incurring a disk 
I/O, even in the worst case and for large data sets.
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Redesign systems in light of search/point query 
asymmetry

Redesign systems to avoid cryptosearches.
• Design new algorithms for concurrency control, 

transactional mechanisms, crash safety, etc, in light of 
the new performance characteristics.

• Redesign existing APIs.

Some cryptosearches, cannot be avoided. 
• How can we mitigate their damage (e.g., Bloom filters, 

SSDs)?

3
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Highly parallel/concurrent write-optimized structures

Write-optimized structures are CPU-bound 
even for workloads on which traditional storage 
systems are I/O bound.

Need highly concurrent, multithreaded write-
optimized data structures.

4
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Summary of Talk
Microdata in parallel and high-end computing:

• We need high-performance I/O. 

How foundational parallelism research helps:
• Better write-optimized data structures.
• Lower bounds.
• Algorithms for concurrency control, transactions.
• Multithreading + high concurrency. 

write-optimized


