Michael A. Bender Stony Brook and Tokutek Martin Farach-Colton Rutgers and Tokutek

Bradley C. Kuszmaul
MIT and Tokutek

 Data centers used 1.5% of US electricity in 2006.

Servers: 50% data-center powel

Storage systems: 27% data-

center power

[Battles, Belleville, Grabau, Maurier.'07]

Obligatory reference to EPA study.

Servers: 50% data-center powel

Storage systems: 27% data-

center power

[Battles, Belleville, Grabau, Maurier.'07]

Obligatory reference to EPA study.

We believe big energy savings & performance gains are still on the table

Modern indexing structures overcome disk-seek bottlenecks of traditional structures

	B-tree	Fractal Tree ^R structure
Insert/delete	$O(\log_B N) = O(\frac{\log N}{\log B})$	$O(\frac{\log N}{B^{1-\epsilon}})$

Modern indexing structures overcome disk-seek bottlenecks of traditional structures

	B-tree	Fractal Tree ^R structure
Insert/delete	$O(\log_B N) = O(\frac{\log N}{\log B})$	$O(\frac{\log N}{B^{1-\epsilon}})$

If B=1024, then B/logB≈100. → 100x speedup.
 (No asymptotic loss in point queries.)

Modern indexing structures overcome disk-seek bottlenecks of traditional structures

	B-tree	Fractal Tree ^R structure
Insert/delete	$O(\log_B N) = O\left(\frac{\log N}{\log B}\right)$	$O(\frac{\log N}{B^{1-\epsilon}})$

- If B=1024, then B/logB≈100. → 100x speedup.
 (No asymptotic loss in point queries.)
- Other structures supporting fast inserts:

[O'Neil1, Cheng2, Gawlick3, O'Neil 96] [Argel 03] [Graefe 03] [Brodal, Fagerberg 03] [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00] [Brodal, Demaine, Fineman, Iacono, Langerman, Munro 00]

Ex. TokuDB^R supports >20,000 index inserts/sec even on high-entropy workloads.

Effectively transform random I/O into sequential I/O.

one reason why A Fast Indexing Makes Databases Greener

Fast insertions means

- we can efficiently maintain sophisticated indexes,
- → both insert & query-dominated workloads also can be more energy-efficient.

one reason why A Fast Indexing Make

customer hat

ses Greener

Fast insertions means

- we can efficiently maintain sophisticated indexes,
- ⇒ both insert & query-dominated workloads also can be more energyefficient.

one reason why A Fast Indexing Make

customer hat

ses Greener

Fast insertions means

- we can efficiently maintain sophisticated indexes,
- ⇒ both insert & query-dominated workloads also can be more energy-efficient.

Many users who think they have query bottlenecks actually have insertion bottlenecks. Customer issues can be solved by fast inserts into sophisticated indexes.

another reason why A Fast Indexing Makes Databases Greener

Promise of green algorithms: enable more power-efficient hardware.

Data centers are already designed around algorithmic specs because existing algorithms should run well on existing hardware.

Algorithms + Enabled Hardware = Big Win

another reason why A Fast Indexing Makes Databases Greener

Example: Data centers use many small-capacity disks rather than a few large-capacity disks

- Why? One reason is to get more I/Os.
- Fractal Tree indexes don't need more spindles.

Power consumption of disks

- Enterprise 80 to 160 GB disk runs at 4W (idle power).
- Enterprise 1-2 TB disk runs at 8W (idle power).

another reason why A Fast Indexing Makes Databases Greener

Example: Data centers use many small-capacity disks rather than a few large-capacity disks

- Why? One reason is to get more I/Os.
- Fractal Tree indexes don't need more spindles.

Power consumption of disks

- Enterprise 80 to 160 GB disk runs at 4W (idle power).
- Enterprise 1-2 TB disk runs at 8W (idle power).

Savings on the table: ~10x in storage

- Other considerations modify this factor
 - e.g., CPUs necessary to drive disks, scale-out infrastructure, cooling, etc.

Algorithms + Enabled Hardware = Big Win

Open Prob 1: Highly Concurrent & Multithreaded Indexing

Develop concurrent, multithreaded indexing data structures for slow, high-core-count machines

- server CPU: ~100 W
- laptop CPU: 5-10 W
 - 4x less capable, 10-20x less power hungry
 - > 5x more energy efficient
- mobile-phone CPU
 - another factor of 5 is on the table

Open Prob 1: Highly Concurrent & Multithreaded Indexing

Develop concurrent, multithreaded indexing data structures for slow, high-core-count machines

- server CPU: ~100 W
- laptop CPU: 5-10 W
 - ▶ 4x less capable, 10-20x less power hungry
 - > 5x more energy efficient
- mobile-phone CPU
 - another factor of 5 is on the table

Fractal Trees drive more CPUs than B-trees

- CPU intensive. e.g, TokuDB is CPU bound
- big efficiency gains are on the table

Open Prob 2: Energy-Efficient SSD/Rotational Disk Hybrid

Design a SSD/rotational disk hybrid for a Fractal-Tree-based storage system.

- Rotational devices are more efficient for sequential I/O
- SSDs are more efficient for random I/O.

Can a hybrid offer energy savings by using each device for the workload it is best suited for?

Fractal Trees deliver >10x speedups on SSDs vs B-trees

Open Prob 3: The proof is in the pudding

Ten thousand? We were talking about a lot more money than this.

Yes, sir, we were, but this is genuine coin of the realm. With a dollar of this, you can buy ten dollars of talk.

Open Prob 3: The proof is in the pudding

Ten thousand? We were talking about a lot more money than this.

Yes, sir, we were, but this is genuine coin of the realm. With a dollar of this, you can buy ten dollars of talk.

