
Understanding Indexing
Without Needing to Understand Data Structures

Boston MySQL Meetup - March 14, 2011

Zardosht Kasheff



What’s a Table?

A dictionary is a set of (key, value) pairs.
• We’ll assume you can update the dictionary (insertions, 

deletions, updates) and query the dictionary (point 
queries, range queries)

• B-Trees and Fractal Trees are examples of dictionaries

• Hashes are not (range queries are not supported)

2



What’s a Table?

3

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

A table is a set of 
dictionaries.

Example:

create table foo (a 
int, b int, c int, 
primary key(a));

Then we insert a bunch 
of data and get...



What’s a Table?

The sort order of a dictionary is defined by the key
• For the data structures/storage engines we’ll think about, 

range queries on the sort order are FAST
• Range queries on any other order require a table scan = 

SLOW
• Point queries -- retrieving the value for one particular key -- 

is SLOW
‣A single point query is fast, but reading a bunch of rows this way is going 

to be 2 orders of magnitude slower than reading the same number of 
rows in range query order

4



What’s an Index?

A Index I on table T is itself a dictionary
• We need to define the (key, value) pairs.

• The key in index I is a subset of fields in the primary 
dictionary T.

• The value in index I is the primary key in T.
‣ There are other ways to define the value, but we’re sticking with this.

Example:

alter table foo add key(b);

Then we get...

5



What’s an Index?

6

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

Primary key(b)



Q: count(*) where a<120;

7

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



Q: count(*) where a<120;

7

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

100 5 45
101 92 2

2



Q: count(*) where b>50;

8

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



Q: count(*) where b>50;

8

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

4



Q: sum(c) where b>50;

9

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



Q: sum(c) where b>50;

9

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

105

156 56 45
256 56 2
101 92 2
198 202 56

Sl
ow

Fa
st



What are indexes good for?

Indexes make queries go fast
• Each index will speed up some subset of queries

Design indexes with queries in mind
• Pick most important queries and set up indexes for those

• Consider the cost of maintaining the indexes

10



What are indexes good for?

Indexes make queries go fast
• Each index will speed up some subset of queries

Design indexes with queries in mind
• Pick most important queries and set up indexes for those

• Consider the cost of maintaining the indexes

10



Goals of Talk

3 simple rules for designing good indexes

Avoid details of any data structure
• B-trees and Fractal Trees are interesting and fun for the 

algorithmically minded computer scientist, but the 3 rules 
will apply equally well to either data structure.

• All we need to care about is that range queries are fast 
(per row) and that point queries are much slower (per 
row).

11



The Rule to Rule Them All

There is no absolute rule
• Indexing is like a math problem

• Rules help, but each scenario is its own problem, which 
requires problem-solving analysis

That said, rules help a lot

12



Three Basic Rules

1. Retrieve less data
• Less bandwidth, less processing, ...

2. Avoid point queries
• Not all data access cost is the same

• Sequential access is MUCH faster than random access

3. Avoid Sorting
• GROUP BY and ORDER BY queries do post-retrieval 

work

• Indexing can help get rid of this work

13



Rule 1
Retrieve less data



Rule 1: Example of slow query

Example TABLE (1B rows, no indexes):
•create table foo (a int, b int, c int);

Query (1000 rows match):
•select sum(c) from foo where b=10 and a<150;

Query Plan:
• Rows where b=10 and a<150 can be anywhere in the table
• Without an index, entire table is scanned

Slow execution:
• Scan 1B rows just to count 1000 rows



Rule 1: How to add an index

What should we do?
• Reduce the data retrieved
• Analyze much less than 1B rows

How (for a simple select)?
• Design index by focusing on the WHERE clause
‣This defines what rows the query is interested in
‣Other rows are not important for this query

16



Rule 1: How to add an index

What should we do?
• Reduce the data retrieved
• Analyze much less than 1B rows

How (for a simple select)?
• Design index by focusing on the WHERE clause
‣This defines what rows the query is interested in
‣Other rows are not important for this query

16

select sum(c) from foo where b=10 and a<150;



Rule 1: Which index?

Option 1: key(a)

Option 2: key(b)

Which is better?  Depends on selectivity:
• If there are fewer rows where a<150, then key(a) is better
• If there are fewer rows where b=10, then key(b) is better

Option 3: key(a) AND key(b), then MERGE
• We’ll come to this later

17



Rule 1: Picking the best key

Neither key(a) nor key(b) is optimal

Suppose:
• 200,000 rows exist where a<150
• 100,000 rows exist where b=10
• 1000 rows exist where b=10 and a<150

Then either index retrieves too much data

For better performance, indexes should try to 
optimize over as many pieces of the where clause 
as possible

• We need a composite index

18



Composite indexes reduce data retrieved

Where clause: b=5 and a<150
• Option 1: key(a,b)
• Option 2: key(b,a)

Which one is better?
• key(b,a)!

KEY RULE: 
• When making a composite index, place equality checking 

columns first.  Condition on b is equality, but not on a.

19



Q: where b=5 and a>150;

20

a b c
100 5 45
101 6 2
156 5 45
165 6 2
198 6 56
206 5 252
256 5 2
412 6 45

b,a a
5,100 100
5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412



Q: where b=5 and a>150;

20

a b c
100 5 45
101 6 2
156 5 45
165 6 2
198 6 56
206 5 252
256 5 2
412 6 45

b,a a
5,100 100
5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412

5,156 156
5,206 206
5,256 256



Composite Indexes: No equality clause

What if where clause is:
•where a>100 and  a<200 and b>100;

Which is better?
• key(a), key(b), key(a,b), key(b,a)?

KEY RULE:
• As soon as a column on a composite index is NOT used for 

equality, the rest of the composite index no longer reduces 
data retrieved.
‣key(a,b) is no better* than key(a)

‣key(b,a) is no better* than key(b)

21



Composite Indexes: No equality clause

What if where clause is:
•where a>100 and  a<200 and b>100;

Which is better?
• key(a), key(b), key(a,b), key(b,a)?

KEY RULE:
• As soon as a column on a composite index is NOT used for 

equality, the rest of the composite index no longer reduces 
data retrieved.
‣key(a,b) is no better* than key(a)

‣key(b,a) is no better* than key(b)

21

* Are there corner cases where it helps?  Yes, but rare.



Q: where b>=5 and a>150;

22

a b c
100 5 45
101 6 2
156 5 45
165 6 2
198 6 56
206 5 252
256 5 2
412 6 45

b,a a
5,100 100
5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412



Q: where b>=5 and a>150;

22

a b c
100 5 45
101 6 2
156 5 45
165 6 2
198 6 56
206 5 252
256 5 2
412 6 45

b,a a
5,100 100
5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412

5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412



Q: where b>=5 and a>150;

22

a b c
100 5 45
101 6 2
156 5 45
165 6 2
198 6 56
206 5 252
256 5 2
412 6 45

b,a a
5,100 100
5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412

5,156 156
5,206 206
5,256 256
6,101 101
6,165 165
6,198 198
6,412 412



Composite Indexes: Another example

WHERE clause: b=5 and c=100
• key(b,a,c) is as good as key(b), because a is not used 

in clause, so having c in index doesn’t help.  key(b,c,a) 
would be much better.

23

a b c
100 5 100
101 6 200
156 5 200
165 6 100
198 6 100
206 5 200
256 5 100
412 6 100

b,a,c a
5,100,100 100
5,156,200 156
5,206,200 206
5,256,100 256
6,101,200 101
6,165,100 165
6,198,100 6,198
6,412,100 412



Composite Indexes: Another example

WHERE clause: b=5 and c=100
• key(b,a,c) is as good as key(b), because a is not used 

in clause, so having c in index doesn’t help.  key(b,c,a) 
would be much better.

23

a b c
100 5 100
101 6 200
156 5 200
165 6 100
198 6 100
206 5 200
256 5 100
412 6 100

b,a,c a
5,100,100 100
5,156,200 156
5,206,200 206
5,256,100 256
6,101,200 101
6,165,100 165
6,198,100 6,198
6,412,100 412

5,100,100 100
5,156,200 156
5,206,200 206
5,256,100 256



Rule 1: Recap

Goal is to reduce rows retrieved
• Create composite indexes based on where clause
• Place equality-comparison columns at the beginning
• Make first non-equality column in index as selective as 

possible
• Once first column in a composite index is not used for 

equality, or not used in where clause, the rest of the 
composite index does not help reduce rows retrieved
‣Does that mean they aren’t helpful?
‣They might be very helpful... on to Rule 2.

24



Rule 2
Avoid Point Queries



Rule 2: Avoid point queries

Table:
•create table foo (a int, b int, c int, 
primary key(a), key(b));

Query:
•select sum(c) from foo where b>50;

Query plan: use key(b)
• retrieval cost of each row is high because random point 

queries are done

26



Q: sum(c) where b>50;

27

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



Q: sum(c) where b>50;

27

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

56 156
56 256
92 101
202 198

105

156 56 45
256 56 2
101 92 2
198 202 56



Rule 2: Avoid Point Queries

Table:
•create table foo (a int, b int, c int, 
primary key(a), key(b));

Query:
•select sum(c) from foo where b>50;

Query plan: scan primary table
• retrieval cost of each row is CHEAP!  
• But you retrieve too many rows

28



Q: sum(c) where b>50;

29

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



Q: sum(c) where b>50;

29

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

105

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45



Rule 2: Avoid Point Queries

Table:
•create table foo (a int, b int, c int, 
primary key(a), key(b));

Query:
•select sum(c) from foo where b>50;

What if we add another index?
• What about key(b,c)?
• Since we index on b, we retrieve only the rows we need.
• Since the index has information about c, we don’t need to 

go to the main table.  No point queries!

30



Q: sum(c) where b>50;

31

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b,c a
5,45 100
6,2 165
23,252 206
43,45 412
56,2 256
56,45 156
92,2 101
202,56 198



Q: sum(c) where b>50;

31

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

b,c a
5,45 100
6,2 165
23,252 206
43,45 412
56,2 256
56,45 156
92,2 101
202,56 198

56,2 256
56,45 156
92,2 101
202,56 198

105



Covering Index

An index covers a query if the index has enough 
information to answer the query.

Examples:

Q: select sum(c) from foo where b<100;

Q: select sum(d) from foo where b<100;

Indexes:
• key(b,c) -- covering index for first query

• key(b,d) -- covering index for second query

• key(b,c,d) -- covering index for both

32



How to build a covering index

Add every field from the select
• Not just where clause

Q: select c,d from foo where a=10 and 
b=100;

Mistake: add index(a,b); 
• This doesn’t cover the query.  You still need point queries 

to retrieve c and d values.

Correct: add index(a,b,c,d);
• Includes all referenced fields

• Place a and b at beginning by Rule 1

33



What if Primary Key matches where?

Q: select sum(c) from foo where b>100 
and b<200;

Schema: create table foo (a int, b 
int, c int, ai int auto_increment, 
primary key (b,ai));

• Query does a range query on primary dictionary

• Only one dictionary is accessed, in sequential order

• This is fast

Primary key covers all queries
• If sort order matches where clause, problems solved

34



What’s a Clustering Index

What if primary key doesn’t match the where 
clause?

• Ideally, you should be able to declare secondary indexes 
that carry all fields

• AFAIK, storage engines don’t let you do this

• With one exception... TokuDB

• TokuDB allows you to declare any index to be 
CLUSTERING

• A CLUSTERING index covers all queries, just like the 
primary key

35



Clustering Indexes in Action

Q: select sum(c) from foo where b<100;

Q: select sum(d) from foo where b>200;

Q: select c,e from foo where b=1000;

Indexes:
• key(b,c) covers first query

• key(b,d) covers second query

• key(b,c,e) covers first and third queries

• key(b,c,d,e) covers all three queries

Indexes require a lot of analysis of queries

36



Clustering Indexes in Action

Q: select sum(c) from foo where b<100;

Q: select sum(d) from foo where b>200;

Q: select c,e from foo where b=1000;

What covers all queries?
• clustering key(b)

Clustering keys let you focus on the where 
clause

• They eliminate point queries and make queries fast

37



More on clustering: Index Merge

We had example:
• create table foo(a int, b int, c int);
•select sum(c) from foo where b=10 and 
a<150;

Suppose
• 200,000 rows have a<150

• 100,000 rows have b=10

• 1000 rows have b=10 and a<150

What if we use key(a) and key(b) and merge 
results?

38



Query Plans

Merge plan:
• Scan 200,000 rows in key(a) where a<150

• Scan 100,000 rows in key(b) where b=10

• Merge the results and find 1000 row identifiers that 
match query

• Do point queries with 1000 row identifiers to retrieve c

Better than no indexes
• Reduces number of rows scanned compared to no index

• Reduces number of point queries compared to not 
merging

39



Does Clustering Help Merging?

Suppose key(a) is clustering

Query plan:
• Scan key(a) for 200,000 rows where a<150

• Scan resulting rows for ones where b=10

• Retrieve c values from 1000 remaining rows

Once again, no point queries

What’s even better?
• clustering key(b,a)!

40



Rule 2 Recap 

Avoid Point Queries

Make sure index covers query
• By mentioning all fields in the query, not just those in the 

where clause

Use clustering indexes
• Clustering indexes cover all queries

• Allows user to focus on where clause

• Speeds up more (and unforeseen) queries -- simplifies 
database design

41



Rule 3
Avoid Sorting



Rule 3: Avoid Sorting

Simple selects require no post-processing
•select * from foo where b=100;

Just get the data and return to user

More complex queries do post-processing
• GROUP BY and ORDER BY sort the data

Index selection can avoid this sorting step

43



Avoid Sorting

Q1: select count(c) from foo;

Q2: select count(c) from foo group by 
b, order by b;

Q1 plan:
• While doing a table scan, count rows with c

Q2 plan
• Scan table and write data to a temporary file

• Sort tmp file data by b

• Rescan sorted data, counting rows with c, for each b

44



Avoid Sorting

Q2: select count(c) from foo group by 
b, order by b;

Q2: what if we use key(b,c)?
• By adding all needed fields, we cover query.  FAST!

• By sorting first by b, we avoid sort.  FAST!

Take home:
• Sort index on group by or order by fields to avoid 

sorting

45



Summing Up

Use indexes to pre-sort for order by and 
group by queries

46



Putting it all together
Sample Queries



Example

48



Example

select count(*) from foo where c=5, 
group by b;

48



Example

select count(*) from foo where c=5, 
group by b;

key(c,b):
• First have c to limit rows retrieved (R1)

• Then have remaining rows sorted by b to avoid sort (R3)

• Remaining rows will be sorted by b because of equality 
test on c

48



Example

49



Example

select sum(d) from foo where c=100, 
group by b;

49



Example

select sum(d) from foo where c=100, 
group by b;

key(c,b,d):
• First have c to limit rows retrieved (R1)

• Then have remaining rows sorted by b to avoid sort (R3)

• Make sure index covers query, to avoid point queries (R2) 

49



Example 

Sometimes, there is no clear answer
• Best index is data dependent

Q: select count(*) from foo where 
c<100, group by b;

Indexes:
•key(c,b)
•key(b,c)

50



Example 

Q: select count(*) from foo where 
c<100, group by b;

Query plan for key(c,b):
• Will filter rows where c<100

• Still need to sort by b
‣ Rows retrieved will not be sorted by b

‣ where clause does not do an equality check on c, so b values are scattered in clumps for 
different c values

51



Example 

Q: select count(*) from foo where 
c<100, group by b;

Query plan for key(b,c):
• Sorted by b, so R3 is covered

• Rows where c>=100 are also processed, so not taking 
advantage of R1

52



Example

Which is better?
• Answer depends on the data

• If there are many rows where c>=100, saving time by not 
retrieving these useless rows helps.  Use key(c,b).

• If there aren’t so many rows where c>=100, the time to 
execute the query is dominated by sorting.  Use 

key(b,c).

The point is, in general, rules of thumb help, but 
often they help us think about queries and 
indexes, rather than giving a recipe.

53



Why not just load up 
with indexes?

Need to keep up with insertion load
More indexes = smaller max load



Indexing cost

Space
• Issue
‣Each index adds storage requirements

• Options
‣Use compression (i.e., aggressive compression of 5-15x always on for 

TokuDB)

Performance
• Issue
‣B-trees while fast for certain indexing tasks (in memory, sequential keys), 

are over 20x slower for other types of indexing

• Options
‣Fractal Tree indexes (TokuDB’s data structure) is fast at all kinds of 

indexing (i.e., random keys, large tables, wide keys, etc...)
‣ No need to worry about what type of index you are creating.
‣ Fractal trees enable customers to index early, index often

55



Last Caveat

Range Query Performance
• Issue
‣Rule #2 (range query performance over point query performance) 

depends on range queries being fast
‣However B-trees can get fragmented
‣ from deletions, from random insertions, ...
‣ Fragmented B-trees get slow for range queries

• Options
‣For B-trees, optimize tables, dump and reload, (ie, time consuming and 

offline maintenance) ...
‣For Fractal Tree indexing (TokuDB), not an issue
‣ Fractal trees don’t fragment

56



Thanks!

For more information...
• Please contact me at zardosht@tokutek.com for any 

thoughts or feedback 

• I will be presenting on indexing in April at both 
Collaborate 11 in FL (10:30 am on 4/11) and the O’Reilly 
Conference in CA (11:55 am on 4/12) 

• Please visit Tokutek.com for a copy of this presentation 
(goo.gl/S2LBe) to learn more about the power of 
indexing, read about Fractal Tree indexes, or to download 
a free eval copy of TokuDB

57

mailto:zardosht@tokutek.com
mailto:zardosht@tokutek.com
http://coll11.mapyourshow.com/3_0/sessions/sessiondetails.cfm?ScheduledSessionID=2099
http://coll11.mapyourshow.com/3_0/sessions/sessiondetails.cfm?ScheduledSessionID=2099
http://en.oreilly.com/mysql2011/public/schedule/detail/17236
http://en.oreilly.com/mysql2011/public/schedule/detail/17236
http://www.tokutek.com
http://www.tokutek.com
http://tokutek.com/wp-content/uploads/2011/03/Tokutek_Understanding_Indexes.pdf
http://tokutek.com/wp-content/uploads/2011/03/Tokutek_Understanding_Indexes.pdf
http://goo.gl/S2LBe
http://goo.gl/S2LBe
http://tokutek.com/technology/
http://tokutek.com/technology/
http://tokutek.com/products/downloads/
http://tokutek.com/products/downloads/

