Search Results for: small query

Parallel Query for MySQL with Shard-Query

While Shard-Query can work over multiple nodes, this blog post focuses on using Shard-Query with a single node.  Shard-Query can add parallelism to queries which use partitioned tables.  Very large tables can often be partitioned fairly easily. Shard-Query can leverage partitioning to add paralellism, because each partition can be queried independently. Because MySQL 5.6 supports the […]

Tools and tips for analysis of MySQL’s Slow Query Log

MySQL has a nice feature, slow query log, which allows you to log all queries that exceed a predefined about of time to execute. Peter Zaitsev first wrote about this back in 2006 – there have been a few other posts here on the MySQL Performance Blog since then (check this and this, too) but […]

The small improvements of MySQL 5.6: Duplicate Index Detection

Here at the MySQL Performance Blog, we’ve been discussing the several new features that MySQL 5.6 brought: GTID-based replication, InnoDB Fulltext, Memcached integration, a more complete performance schema, online DDL and several other InnoDB and query optimizer improvements. However, I plan to focus on a series of posts on the small but handy improvements – […]

Distributed Set Processing with Shard-Query

Can Shard-Query scale to 20 nodes? Peter asked this question in comments to to my previous Shard-Query benchmark. Actually he asked if it could scale to 50, but testing 20 was all I could due to to EC2 and time limits. I think the results at 20 nodes are very useful to understand the performance: […]

Shard-Query EC2 images available

Infobright and InnoDB AMI images are now available There are now demonstration AMI images for Shard-Query. Each image comes pre-loaded with the data used in the previous Shard-Query blog post. The data in the each image is split into 20 “shards”. This blog post will refer to an EC2 instances as a node from here […]

Shard-Query turbo charges Infobright community edition (ICE)

Shard-Query is an open source tool kit which helps improve the performance of queries against a MySQL database by distributing the work over multiple machines and/or multiple cores. This is similar to the divide and conquer approach that Hive takes in combination with Hadoop. Shard-Query applies a clever approach to parallelism which allows it to […]