Search Results for: join large tables

When (and how) to move an InnoDB table outside the shared tablespace

In my last post, “A closer look at the MySQL ibdata1 disk space issue and big tables,” I looked at the growing ibdata1 problem under the perspective of having big tables residing inside the so-called shared tablespace. In the particular case that motivated that post, we had a customer running out of disk space in his […]

A case for MariaDB’s Hash Joins

MariaDB 5.3/5.5 has introduced a new join type “Hash Joins” which is an implementation of a Classic Block-based Hash Join Algorithm. In this post we will see what the Hash Join is, how it works and for what types of queries would it be the right choice. I will show the results of executing benchmarks […]

Join Optimizations in MySQL 5.6 and MariaDB 5.5

This is the third blog post in the series of blog posts leading up to the talk comparing the optimizer enhancements in MySQL 5.6 and MariaDB 5.5. This blog post is targeted at the join related optimizations introduced in the optimizer. These optimizations are available in both MySQL 5.6 and MariaDB 5.5, and MariaDB 5.5 […]

Finding what Created_tmp_disk_tables with log_slow_filter

Whilst working with a client recently I noticed a large number of temporary tables being created on disk.

Enum Fields VS Varchar VS Int + Joined table: What is Faster?

Really often in customers’ application we can see a huge tables with varchar/char fields, with small sets of possible values. These are “state”, “gender”, “status”, “weapon_type”, etc, etc. Frequently we suggest to change such fields to use ENUM column type, but is it really necessary (from performance standpoint)? In this post I’d like to present […]

Why MySQL could be slow with large tables ?

If you’ve been reading enough database related forums, mailing lists or blogs you probably heard complains about MySQL being unable to handle more than 1.000.000 (or select any other number) rows by some of the users. On other hand it is well known with customers like Google, Yahoo, LiveJournal,Technocarati MySQL has installations with many billions […]